Recent studies in humans and animal models suggest a primary role of the basal ganglia in the extraction of stimulus-value regularities, then exploited to orient attentional shift and build up sensorimotor memories. The tail of the caudate and the posterior putamen both receive early visual input from the superficial layers of the superior colliculus, thus forming a closed-loop. We portend that the functional value of this circuit is to manage the selection of visual stimuli in a rapid and automatic way, once sensory–motor associations are formed and stored in the posterior striatum. In Parkinson's Disease, the nigrostriatal dopamine depletion starts and tends to be more pronounced in the posterior putamen. Thus, at least some aspect of the visuospatial attention deficits observed since the early stages of the disease could be the behavioral consequences of a cognitive system that has lost the ability to translate high-level processing in stable sensorimotor memories.

A subcortical network for implicit visuo-spatial attention: Implications for Parkinson's Disease

Tamietto M.;Geminiani G. C.;Celeghin A.
Last
2021-01-01

Abstract

Recent studies in humans and animal models suggest a primary role of the basal ganglia in the extraction of stimulus-value regularities, then exploited to orient attentional shift and build up sensorimotor memories. The tail of the caudate and the posterior putamen both receive early visual input from the superficial layers of the superior colliculus, thus forming a closed-loop. We portend that the functional value of this circuit is to manage the selection of visual stimuli in a rapid and automatic way, once sensory–motor associations are formed and stored in the posterior striatum. In Parkinson's Disease, the nigrostriatal dopamine depletion starts and tends to be more pronounced in the posterior putamen. Thus, at least some aspect of the visuospatial attention deficits observed since the early stages of the disease could be the behavioral consequences of a cognitive system that has lost the ability to translate high-level processing in stable sensorimotor memories.
2021
141
421
435
Basal ganglia; Parkinson disease; Selective attention; Sensorimotor memories; Superior colliculus
Esposito M.; Tamietto M.; Geminiani G.C.; Celeghin A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1795156
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact