Soil can be resuspended in the atmosphere due to wind or mechanical disturbances, such as agricultural activities (sowing, tilling, etc.), producing fine particulate matter (PM). Agriculture is estimated to be the third PM10-emitting sector in Europe, emitting more than the transportation sector. However, very few emission figures are available for the different cropping operations. Moreover, soil Emission Potential (EP) is extremely variable, since is influenced by factors such as humidity, texture, chemical composition, and wind speed. Due to their similarity to tilling emission mechanisms, Soil Resuspension Chambers (SRC) are the most suitable method to estimate the impacts of these factors on soil susceptibility to emit PM10 during cropping operations (Emission Potential, EP). The main objective of this work is to assess the EP of different agricultural soils used for maize cropping in North-Western Italy, studying the influence of soil moisture and physico-chemical characteristics. Therefore, a SRC was developed, based on previous studies, with the goal of being relatively small, easy to operate and low-cost. Using the gathered data, a log-linear multiple regression model was developed to allow soil EP estimation from few physico-chemical parameters (moisture, sand/silt ratio and organic carbon content). The model allows to tailor field Emission Factors (EF) of specific cropping operations to different soil and moisture conditions and was applied to an EF for rotary harrowing, defined in a previous study. The concentration of Potentially Toxic Elements (PTE) in soil-emitted PM10 was determined, founding an enrichment up to 16 times higher than in the original soil, evidencing a possible cause of concern for operator's safety during agricultural activities. © 2021 Elsevier B.V.

Soil PM10 emission potential under specific mechanical stress and particles characteristics

Padoan, Elio
First
;
Maffia, Jacopo;Balsari, Paolo;Ajmone-Marsan, Franco;Dinuccio, Elio
Last
2021-01-01

Abstract

Soil can be resuspended in the atmosphere due to wind or mechanical disturbances, such as agricultural activities (sowing, tilling, etc.), producing fine particulate matter (PM). Agriculture is estimated to be the third PM10-emitting sector in Europe, emitting more than the transportation sector. However, very few emission figures are available for the different cropping operations. Moreover, soil Emission Potential (EP) is extremely variable, since is influenced by factors such as humidity, texture, chemical composition, and wind speed. Due to their similarity to tilling emission mechanisms, Soil Resuspension Chambers (SRC) are the most suitable method to estimate the impacts of these factors on soil susceptibility to emit PM10 during cropping operations (Emission Potential, EP). The main objective of this work is to assess the EP of different agricultural soils used for maize cropping in North-Western Italy, studying the influence of soil moisture and physico-chemical characteristics. Therefore, a SRC was developed, based on previous studies, with the goal of being relatively small, easy to operate and low-cost. Using the gathered data, a log-linear multiple regression model was developed to allow soil EP estimation from few physico-chemical parameters (moisture, sand/silt ratio and organic carbon content). The model allows to tailor field Emission Factors (EF) of specific cropping operations to different soil and moisture conditions and was applied to an EF for rotary harrowing, defined in a previous study. The concentration of Potentially Toxic Elements (PTE) in soil-emitted PM10 was determined, founding an enrichment up to 16 times higher than in the original soil, evidencing a possible cause of concern for operator's safety during agricultural activities. © 2021 Elsevier B.V.
2021
779
1
8
https://www.sciencedirect.com/science/article/pii/S0048969721015369
Emission model; Particulate matter; PM10; Potentially toxic elements; Soil dust
Padoan, Elio; Maffia, Jacopo; Balsari, Paolo; Ajmone-Marsan, Franco; Dinuccio, Elio
File in questo prodotto:
File Dimensione Formato  
2021 - Articolo Soil PM10 betoniera umidità.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Articolo betoniera_final version.pdf

Open Access dal 16/03/2023

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 975.59 kB
Formato Adobe PDF
975.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1797282
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact