Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: −43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42–3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.

A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light

Tosi Simone
First
;
2017-01-01

Abstract

Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: −43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42–3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.
2017
7
1
1
13
http://www.nature.com/articles/s41598-017-15308-6
Animal Behavior; Locomotion; toxicology
Tosi Simone; Nieh James
File in questo prodotto:
File Dimensione Formato  
Tosi et al 2017 Neonics Locomotion SCI REP.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1800592
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 52
social impact