Sonodynamic Therapy (SDT) is a new anticancer strategy based on ultrasound (US) technique and is derived from photodynamic therapy (PDT); SDT is still, however, far from clinical application. In order to move this therapy forward from bench to bedside, investigations have been focused on treatment selectivity between cancer cells and normal cells. As a result, the effects of the porphyrin activation by SDT on cancer (HT-29) and normal (HDF 106-05) cells were studied in a co-culture evaluating cell cytotoxicity, reactive oxygen species (ROS) production, mitochondrial function and plasma membrane fluidity according to the bilayer sonophore (BLS) theory. While PDT induced similar effects on both HT-29 and HDF 106-05 cells in co-culture, SDT elicited significant cytotoxicity, ROS production and mitochondrial impairment on HT-29 cells only, whereas HDF 106-05 cells were unaffected. Notably, HT-29 and HDF 106-05 showed different cell membrane fluidity during US exposure. In conclusion, our data demonstrate a marked difference between cancer cells and normal cells in co-culture in term of responsiveness to SDT, suggesting that this different behavior can be ascribed to diversity in plasma membrane properties, such as membrane fluidity, according to the BLS theory.
Sonodynamic treatment induces selective killing of cancer cells in an in vitro co-culture model
Foglietta F.First
;Barbero N.;Panzanelli P.;Terreno E.;Serpe L.
;Canaparo R.Last
2021-01-01
Abstract
Sonodynamic Therapy (SDT) is a new anticancer strategy based on ultrasound (US) technique and is derived from photodynamic therapy (PDT); SDT is still, however, far from clinical application. In order to move this therapy forward from bench to bedside, investigations have been focused on treatment selectivity between cancer cells and normal cells. As a result, the effects of the porphyrin activation by SDT on cancer (HT-29) and normal (HDF 106-05) cells were studied in a co-culture evaluating cell cytotoxicity, reactive oxygen species (ROS) production, mitochondrial function and plasma membrane fluidity according to the bilayer sonophore (BLS) theory. While PDT induced similar effects on both HT-29 and HDF 106-05 cells in co-culture, SDT elicited significant cytotoxicity, ROS production and mitochondrial impairment on HT-29 cells only, whereas HDF 106-05 cells were unaffected. Notably, HT-29 and HDF 106-05 showed different cell membrane fluidity during US exposure. In conclusion, our data demonstrate a marked difference between cancer cells and normal cells in co-culture in term of responsiveness to SDT, suggesting that this different behavior can be ascribed to diversity in plasma membrane properties, such as membrane fluidity, according to the BLS theory.File | Dimensione | Formato | |
---|---|---|---|
2021 Cancers.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
3.2 MB
Formato
Adobe PDF
|
3.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.