This review examines recent advances in photocatalytic CO2 reduction using heterogenized molecular catalysts. The main part of the discussion is focused on the chemistry used to attach catalysts to different supports to produce hybrid materials, and how this effects photocatalytic performance. Examples of hybrid materials used for colloidal dispersions and solid suspensions are presented, including those based on carbon nitride, chalcogenide and perovskite quantum dots, and metal oxides. Some key examples in which this chemistry has been employed to make electrodes and photoelectrodes for photoelectrochemical CO2 reduction are also presented. In addition, the incorporation of molecular catalysts into ordered, porous frameworks (MOFs and COFs) is discussed because it offers many new and unique chemical pathways for heterogenization. Lastly, an outlook for this field and the potential future impact of these systems on solar fuels research is given.
Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals
Perazio A.First
;Gobetto R.;
2021-01-01
Abstract
This review examines recent advances in photocatalytic CO2 reduction using heterogenized molecular catalysts. The main part of the discussion is focused on the chemistry used to attach catalysts to different supports to produce hybrid materials, and how this effects photocatalytic performance. Examples of hybrid materials used for colloidal dispersions and solid suspensions are presented, including those based on carbon nitride, chalcogenide and perovskite quantum dots, and metal oxides. Some key examples in which this chemistry has been employed to make electrodes and photoelectrodes for photoelectrochemical CO2 reduction are also presented. In addition, the incorporation of molecular catalysts into ordered, porous frameworks (MOFs and COFs) is discussed because it offers many new and unique chemical pathways for heterogenization. Lastly, an outlook for this field and the potential future impact of these systems on solar fuels research is given.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0010854521002927-main.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
4.47 MB
Formato
Adobe PDF
|
4.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.