Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.

Targeted therapies in rare brain tumours

Bruno F.
First
;
Pellerino A.;Bertero L.;Soffietti R.;Ruda R.
2021-01-01

Abstract

Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.
2021
22
15
7949
7949
Molecular neuro-oncology; Rare brain tumours; Targeted therapies; Humans; Brain Neoplasms; Molecular Targeted Therapy; Mutation; Neoplasm Proteins; Rare Diseases; Signal Transduction
Bruno F.; Pellerino A.; Bertero L.; Soffietti R.; Ruda R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1803351
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact