The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P ¯ ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper.

PANDA Phase One: PANDA collaboration

Bussa M. P.;Spataro S.;
2021-01-01

Abstract

The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P ¯ ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper.
2021
57
6
1
36
https://link.springer.com/article/10.1140/epja/s10050-021-00475-y
Barucca G.; Davi F.; Lancioni G.; Mengucci P.; Montalto L.; Natali P.P.; Paone N.; Rinaldi D.; Scalise L.; Krusche B.; Steinacher M.; Liu Z.; Liu C.; Liu B.; Shen X.; Sun S.; Zhao G.; Zhao J.; Albrecht M.; Alkakhi W.; Bokelmann S.; Coen S.; Feldbauer F.; Fink M.; Frech J.; Freudenreich V.; Fritsch M.; Grochowski J.; Hagdorn R.; Heinsius F.H.; Held T.; Holtmann T.; Keshk I.; Koch H.; Kopf B.; Kummel M.; Kussner M.; Li J.; Linzen L.; Maldaner S.; Oppotsch J.; Pankonin S.; Pelizaus M.; Pfluger S.; Reher J.; Reicherz G.; Schnier C.; Steinke M.; Triffterer T.; Wenzel C.; Wiedner U.; Denizli H.; Er N.; Keskin U.; Yerlikaya S.; Yilmaz A.; Beck R.; Chauhan V.; Hammann C.; Hartmann J.; Ketzer B.; Mullers J.; Salisbury B.; Schmidt C.; Thoma U.; Urban M.; Bianconi A.; Bragadireanu M.; Pantea D.; Rimjaem S.; Domagala M.; Filo G.; Lisowski E.; Lisowski F.; Michalek M.; Poznanski P.; Plazek J.; Korcyl K.; Lebiedowicz P.; Pysz K.; Schafer W.; Szczurek A.; Firlej M.; Fiutowski T.; Idzik M.; Moron J.; Swientek K.; Terlecki P.; Korcyl G.; Lalik R.; Malige A.; Moskal P.; Nowakowski K.; Przygoda W.; Rathod N.; Salabura P.; Smyrski J.; Augustin I.; Bohm R.; Lehmann I.; Schmitt L.; Varentsov V.; Al-Turany M.; Belias A.; Deppe H.; Dzhygadlo R.; Flemming H.; Gerhardt A.; Gotzen K.; Heinz A.; Jiang P.; Karabowicz R.; Koch S.; Kurilla U.; Lehmann D.; Luhning J.; Lynen U.; Orth H.; Peters K.; Putz J.; Ritman J.; Schepers G.; Schmidt C.J.; Schwarz C.; Schwiening J.; Taschner A.; Traxler M.; Voss B.; Wieczorek P.; Abazov V.; Alexeev G.; Barabanov M.Y.; Dodokhov V.K.; Efremov A.; Fechtchenko A.; Galoyan A.; Golovanov G.; Koshurnikov E.K.; Lobanov Y.Y.; Olshevskiy A.G.; Piskun A.A.; Samartsev A.; Shimanski S.; Skachkov N.B.; Skachkova A.N.; Strokovsky E.A.; Tokmenin V.; Uzhinsky V.; Verkheev A.; Vodopianov A.; Zhuravlev N.I.; Watts D.; Bohm M.; Eyrich W.; Lehmann A.; Miehling D.; Pfaffinger M.; Seth K.; Xiao T.; Ali A.; Hamdi A.; Himmelreich M.; Krebs M.; Nakhoul S.; Nerling F.; Gianotti P.; Lucherini V.; Bracco G.; Bodenschatz S.; Brinkmann K.T.; Bruck L.; Diehl S.; Dormenev V.; Duren M.; Erlen T.; Hahn C.; Hayrapetyan A.; Hofmann J.; Kegel S.; Khalid F.; Koseoglu I.; Kripko A.; Kuhn W.; Metag V.; Moritz M.; Nanova M.; Novotny R.; Orsich P.; Pereira-de-Lira J.; Sachs M.; Schmidt M.; Schubert R.; Strickert M.; Wasem T.; Zaunick H.G.; Tomasi-Gustafsson E.; Glazier D.; Ireland D.; Seitz B.; Kappert R.; Kavatsyuk M.; Loehner H.; Messchendorp J.; Rodin V.; Kalita K.; Huang G.; Liu D.; Peng H.; Qi H.; Sun Y.; Zhou X.; Kunze M.; Azizi K.; Olgun A.T.; Tavukoglu Z.; Derichs A.; Dosdall R.; Esmail W.; Gillitzer A.; Goldenbaum F.; Grunwald D.; Jokhovets L.; Kannika J.; Kulessa P.; Orfanitski S.; Perez-Andrade G.; Prasuhn D.; Prencipe E.; Rosenthal E.; Schadmand S.; Schmitz R.; Scholl A.; Sefzick T.; Serdyuk V.; Stockmanns T.; Veretennikov D.; Wintz P.; Wustner P.; Xu H.; Zhou Y.; Cao X.; Hu Q.; Liang Y.; Rigato V.; Isaksson L.; Achenbach P.; Corell O.; Denig A.; Distler M.; Hoek M.; Lauth W.; Leithoff H.H.; Merkel H.; Muller U.; Petersen J.; Pochodzalla J.; Schlimme S.; Sfienti C.; Thiel M.; Bleser S.; Bolting M.; Capozza L.; Dbeyssi A.; Ehret A.; Klasen R.; Kliemt R.; Maas F.; Motzko C.; Noll O.; Pineiro D.R.; Schupp F.; Steinen M.; Wolff S.; Zimmermann I.; Kazlou D.; Korzhik M.; Missevitch O.; Balanutsa P.; Chernetsky V.; Demekhin A.; Dolgolenko A.; Fedorets P.; Gerasimov A.; Golubev A.; Kantsyrev A.; Kirin D.Y.; Kristi N.; Ladygina E.; Luschevskaya E.; Matveev V.A.; Panjushkin V.; Stavinskiy A.V.; Balashoff A.; Boukharov A.; Bukharova M.; Malyshev O.; Vishnevsky E.; Bonaventura D.; Brand P.; Hetz B.; Husken N.; Kellers J.; Khoukaz A.; Klostermann D.; Mannweiler C.; Vestrick S.; Bumrungkoh D.; Herold C.; Khosonthongkee K.; Kobdaj C.; Limphirat A.; Manasatitpong K.; Nasawad T.; Pongampai S.; Simantathammakul T.; Srisawad P.; Wongprachanukul N.; Yan Y.; Yu C.; Zhang X.; Zhu W.; Antokhin E.; Barnyakov A.Y.; Beloborodov K.; Blinov V.E.; Kuyanov I.A.; Pivovarov S.; Pyata E.; Tikhonov Y.; Blinov A.E.; Kononov S.; Kravchenko E.A.; Lattery M.; Boca G.; Duda D.; Finger M.; Finger M.; Kveton A.; Prochazka I.; Slunecka M.; Volf M.; Jary V.; Korchak O.; Marcisovsky M.; Neue G.; Novy J.; Tomasek L.; Tomasek M.; Virius M.; Vrba V.; Abramov V.; Bukreeva S.; Chernichenko S.; Derevschikov A.; Ferapontov V.; Goncharenko Y.; Levin A.; Maslova E.; Melnik Y.; Meschanin A.; Minaev N.; Mochalov V.; Moiseev V.; Morozov D.; Nogach L.; Poslavskiy S.; Ryazantsev A.; Ryzhikov S.; Semenov P.; Shein I.; Uzunian A.; Vasiliev A.; Yakutin A.; Belostotski S.; Fedotov G.; Izotov A.; Manaenkov S.; Miklukho O.; Cederwall B.; Preston M.; Tegner P.E.; Wolbing D.; Gandhi K.; Rai A.K.; Godre S.; Crede V.; Dobbs S.; Eugenio P.; Bussa M.P.; Spataro S.; Calvo D.; De Remigis P.; Filippi A.; Mazza G.; Wheadon R.; Iazzi F.; Lavagno A.; Akram A.; Calen H.; Andersson W.I.; Johansson T.; Kupsc A.; Marciniewski P.; Papenbrock M.; Regina J.; Rieger J.; Schonning K.; Wolke M.; Chlopik A.; Kesik G.; Melnychuk D.; Tarasiuk J.; Wojciechowski M.; Wronka S.; Zwieglinski B.; Amsler C.; Buhler P.; Marton J.; Zimmermann S.; Fischer C.S.; Haidenbauer J.; Hanhart C.; Lutz M.F.M.; Ryan S.M.
File in questo prodotto:
File Dimensione Formato  
Barucca2021_Article_PANDAPhaseOne.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 4.6 MB
Formato Adobe PDF
4.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1804923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 32
social impact