The experience gained over the last hundred years clearly indicates that two groups of viruses represent the main risk for the development of highly transmissible epidemics and pandemics in the human species: influenza viruses and coronaviruses (CoV). Although the search for viruses with pandemic potential in the environment may have an important predictive and monitoring role, it is still based on empirical methodologies, mostly resulting from the clinic and not fully validated for environmental matrices. As far as the SARS-CoV-2 pandemic, currently underway, is concerned, environmental monitoring activities aiming at checking the presence of SARS-CoV-2 in wastewater can be extremely useful to predict and check the diffusion of the disease. For this reason, the present study aims at evaluating the SARS-CoV-2 diffusion by means of a wastewater-based environmental monitoring developed in Piedmont, N–W Italy, during the second and third pandemic waves. Wastewater sampling strategies, sampling points sample pre-treatments and analytical methods, data processing and standardization, have been developed and discussed to give representative and reliable results. The following outcomes has been highlighted by the present study: i) a strong correlation between SARS-CoV-2 concentration in untreated wastewater and epidemic evolution in the considered areas can be observed as well as a predictive potential that could provide decision-makers with indications to implement effective policies, to mitigate the effects of the ongoing pandemic and to prepare response plans for future pandemics that could certainly arise in the decades to come; ii) moreover, the data at disposal from our monitoring campaign (almost 500 samples analysed in 11 months) confirm that SARS-CoV-2 concentrations in wastewater are strongly variable and site-specific across the region: the highest SARS-CoV-2 concentration values have been found in sewer networks serving the most populated areas of the region; iii) normalization of viral concentrations in wastewater through Pepper Mild Mottle Virus (a specific faecal marker) has been carried out and commented; iv) the study highlights the potential of wastewater treatment plants to degrade the genetic material referable to SARS-CoV-2 as well. In conclusion, the preliminary data reported in the present paper, although they need to be complemented by further studies considering also other geographical regions, are very promising.

Wastewater-based SARS-CoV-2 environmental monitoring for Piedmont, Italy

Lembo D.;Polato D.;Civra A.;Cusato J.;Di Perri G.
Last
2021-01-01

Abstract

The experience gained over the last hundred years clearly indicates that two groups of viruses represent the main risk for the development of highly transmissible epidemics and pandemics in the human species: influenza viruses and coronaviruses (CoV). Although the search for viruses with pandemic potential in the environment may have an important predictive and monitoring role, it is still based on empirical methodologies, mostly resulting from the clinic and not fully validated for environmental matrices. As far as the SARS-CoV-2 pandemic, currently underway, is concerned, environmental monitoring activities aiming at checking the presence of SARS-CoV-2 in wastewater can be extremely useful to predict and check the diffusion of the disease. For this reason, the present study aims at evaluating the SARS-CoV-2 diffusion by means of a wastewater-based environmental monitoring developed in Piedmont, N–W Italy, during the second and third pandemic waves. Wastewater sampling strategies, sampling points sample pre-treatments and analytical methods, data processing and standardization, have been developed and discussed to give representative and reliable results. The following outcomes has been highlighted by the present study: i) a strong correlation between SARS-CoV-2 concentration in untreated wastewater and epidemic evolution in the considered areas can be observed as well as a predictive potential that could provide decision-makers with indications to implement effective policies, to mitigate the effects of the ongoing pandemic and to prepare response plans for future pandemics that could certainly arise in the decades to come; ii) moreover, the data at disposal from our monitoring campaign (almost 500 samples analysed in 11 months) confirm that SARS-CoV-2 concentrations in wastewater are strongly variable and site-specific across the region: the highest SARS-CoV-2 concentration values have been found in sewer networks serving the most populated areas of the region; iii) normalization of viral concentrations in wastewater through Pepper Mild Mottle Virus (a specific faecal marker) has been carried out and commented; iv) the study highlights the potential of wastewater treatment plants to degrade the genetic material referable to SARS-CoV-2 as well. In conclusion, the preliminary data reported in the present paper, although they need to be complemented by further studies considering also other geographical regions, are very promising.
2021
203
1
11
COVID-19 surveillance; E gene; Sampling; SARS-CoV-2 prevalence; Wastewater treatment plant; Wastewater-based epidemiology
Robotto A.; Lembo D.; Quaglino P.; Brizio E.; Polato D.; Civra A.; Cusato J.; Di Perri G.
File in questo prodotto:
File Dimensione Formato  
MANUSCRIPT WATER.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 9.61 MB
Formato Adobe PDF
9.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1806219
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact