The Banchetta-Rognosa tectonic unit (BRU), covering an area of 10 km2 in the upper Chisone valley, consists of two successions referred to a continental margin (Monte Banchetta succession) and a proximal oceanic domain (Punta Rognosa succession) respectively. In both successions, Mesozoic meta-sedimentary covers discordantly lie on their basement. This paper presents new data on the lithostratigraphy and the metamorphic evolution of the continental basement of the Monte Banchetta succession. It comprises two meta-sedimentary sequences with minor metaintrusive bodies preserving their original lithostratigraphic configuration, despite the intense Alpine deformation and metamorphic re-equilibration. Phase equilibrium modeling points to a metamorphic eclogitic peak (D1 event) of 20–23 kbar and 440–500 °C, consistent among three different samples, analyzed from suitable lithologies. The exhumation P–T path is characterized by a first decompression of at least 10 kbar, leading to the development of the main regional foliation (i.e. tectono-metamorphic event D2). The subsequent exhumation stage (D3 event) is marked by a further decompression of almost 7–8 kbar associated with a significant temperature decrease (cooling down to 350–400 °C), implying a geothermal gradient compatible with a continental collision regime. These data infer for this unit higher peak P–T conditions than previously estimated with conventional thermobarometry. The comparison of our results with the peak P–T conditions registered by other neighboring tectonic units allows to interpret the BRU as one of the westernmost eclogite-facies unit in the Alps

Eclogitic metamorphism in the Alpine far‑west: petrological constraints on the Banchetta‑Rognosa tectonic unit (Val Troncea, Western Alps)

Alberto Corno;Chiara Groppo;Pietro Mosca;Alessandro Borghi;Marco Gattiglio
2021-01-01

Abstract

The Banchetta-Rognosa tectonic unit (BRU), covering an area of 10 km2 in the upper Chisone valley, consists of two successions referred to a continental margin (Monte Banchetta succession) and a proximal oceanic domain (Punta Rognosa succession) respectively. In both successions, Mesozoic meta-sedimentary covers discordantly lie on their basement. This paper presents new data on the lithostratigraphy and the metamorphic evolution of the continental basement of the Monte Banchetta succession. It comprises two meta-sedimentary sequences with minor metaintrusive bodies preserving their original lithostratigraphic configuration, despite the intense Alpine deformation and metamorphic re-equilibration. Phase equilibrium modeling points to a metamorphic eclogitic peak (D1 event) of 20–23 kbar and 440–500 °C, consistent among three different samples, analyzed from suitable lithologies. The exhumation P–T path is characterized by a first decompression of at least 10 kbar, leading to the development of the main regional foliation (i.e. tectono-metamorphic event D2). The subsequent exhumation stage (D3 event) is marked by a further decompression of almost 7–8 kbar associated with a significant temperature decrease (cooling down to 350–400 °C), implying a geothermal gradient compatible with a continental collision regime. These data infer for this unit higher peak P–T conditions than previously estimated with conventional thermobarometry. The comparison of our results with the peak P–T conditions registered by other neighboring tectonic units allows to interpret the BRU as one of the westernmost eclogite-facies unit in the Alps
2021
114
16
1
20
Western Alps, Banchetta-Rognosa Unit, Lithostratigraphy, Tectono-metamorphic evolution, P–T isochemical phase diagrams
Alberto Corno, Chiara Groppo, Pietro Mosca, Alessandro Borghi, Marco Gattiglio
File in questo prodotto:
File Dimensione Formato  
Swiss Journal of Geosciences 2021.pdf

Accesso aperto

Descrizione: PDF EDITORIALE
Tipo di file: PDF EDITORIALE
Dimensione 22.07 MB
Formato Adobe PDF
22.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1807917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact