The oxidation functionality of Mn(IV) sites has been assessed by density functional theory (DFT) analysis of adsorption and activation energies of CO, H2 and O2 on a model Mn4O8 cluster. DFT calculations indicate that Mn(IV) atoms prompt an easy CO conversion to CO2 via a reaction path involving both catalyst and gas-phase oxygen species, while much greater energy barriers hinder H2 oxidation. Accordingly, a MnCeOx catalyst (Mnat/Ceat, 5) with large exposure of Mn(IV) sites shows a remarkable CO oxidation performance at T ≥ 293 K and no H2 oxidation activity below 393 K. Empiric kinetics disclose that the catalyst-oxygen abstraction step determines both CO and H2 oxidation rate, although different activation energies favor the preferential oxidation (PROX) pattern of the studied catalyst (353–423 K). Conversion-selectivity of 100%, high stability during 72 h reaction time and moderate inhibiting effects of water and CO2 feeding reveal the potential of MnO2 materials as efficient, low-cost and robust PROX catalysts.

DFT and kinetic evidences of the preferential CO oxidation pattern of manganese dioxide catalysts in hydrogen stream (PROX)

Morandi S.;Martra G.;
2022-01-01

Abstract

The oxidation functionality of Mn(IV) sites has been assessed by density functional theory (DFT) analysis of adsorption and activation energies of CO, H2 and O2 on a model Mn4O8 cluster. DFT calculations indicate that Mn(IV) atoms prompt an easy CO conversion to CO2 via a reaction path involving both catalyst and gas-phase oxygen species, while much greater energy barriers hinder H2 oxidation. Accordingly, a MnCeOx catalyst (Mnat/Ceat, 5) with large exposure of Mn(IV) sites shows a remarkable CO oxidation performance at T ≥ 293 K and no H2 oxidation activity below 393 K. Empiric kinetics disclose that the catalyst-oxygen abstraction step determines both CO and H2 oxidation rate, although different activation energies favor the preferential oxidation (PROX) pattern of the studied catalyst (353–423 K). Conversion-selectivity of 100%, high stability during 72 h reaction time and moderate inhibiting effects of water and CO2 feeding reveal the potential of MnO2 materials as efficient, low-cost and robust PROX catalysts.
2022
300
120715
120724
DFT analysis; H; 2; and CO oxidation; Manganese dioxide catalyst; Preferential CO oxidation; Reaction mechanism and kinetics
Arena F.; Ferrante F.; Di Chio R.; Bonura G.; Frusteri F.; Frusteri L.; Prestianni A.; Morandi S.; Martra G.; Duca D.
File in questo prodotto:
File Dimensione Formato  
Applied Catalysis B 300 (2022) 120715.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 6.78 MB
Formato Adobe PDF
6.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1808720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact