Human liver stem-cell-derived extracellular vesicles (HLSC-EVs) exhibit therapeutic properties in various pre-clinical models of kidney injury. We previously reported an overall improvement in kidney function following treatment with HLSC-EVs in a model of aristolochic acid nephropathy (AAN). Here, we provide evidence that HLSC-EVs exert anti-fibrotic effects by interfering with β-catenin signalling. A mouse model of AAN and an in vitro pro-fibrotic model were used. The β-catenin mRNA and protein expression, together with the pro-fibrotic markers α-SMA and collagen 1, were evaluated in vivo and in vitro following treatment with HLSC-EVs. Expression and functional analysis of miR29b was performed in vitro following HLSC-EV treatments through loss-of-function experiments. Results showed that expression of β-catenin was amplified both in vivo and in vitro, and β-catenin gene silencing in fibroblasts prevented AA-induced up-regulation of pro-fibrotic genes, revealing that β-catenin is an important factor in fibroblast activation. Treatment with HLSC-EVs caused increased expression of miR29b, which was significantly inhibited in the presence of α-amanitin. The suppression of the miR29b function with a selective inhibitor abolished the anti-fibrotic effects of HLSC-EVs, resulting in the up-regulation of β-catenin and pro-fibrotic α-Sma and collagen type 1 genes. Together, these data suggest a novel HLSC-EV-dependent regulatory mechanism in which β-catenin is down regulated by HLSC-EVs-induced miR29b expression.

Human Liver Stem Cell Derived Extracellular Vesicles Alleviate Kidney Fibrosis by Interfering with the β-Catenin Pathway through miR29b

Kholia S
First
;
Herrera Sanchez MB;Deregibus MC;Sassoè‐Pognetto M;Camussi G;Brizzi MF
Last
2021-01-01

Abstract

Human liver stem-cell-derived extracellular vesicles (HLSC-EVs) exhibit therapeutic properties in various pre-clinical models of kidney injury. We previously reported an overall improvement in kidney function following treatment with HLSC-EVs in a model of aristolochic acid nephropathy (AAN). Here, we provide evidence that HLSC-EVs exert anti-fibrotic effects by interfering with β-catenin signalling. A mouse model of AAN and an in vitro pro-fibrotic model were used. The β-catenin mRNA and protein expression, together with the pro-fibrotic markers α-SMA and collagen 1, were evaluated in vivo and in vitro following treatment with HLSC-EVs. Expression and functional analysis of miR29b was performed in vitro following HLSC-EV treatments through loss-of-function experiments. Results showed that expression of β-catenin was amplified both in vivo and in vitro, and β-catenin gene silencing in fibroblasts prevented AA-induced up-regulation of pro-fibrotic genes, revealing that β-catenin is an important factor in fibroblast activation. Treatment with HLSC-EVs caused increased expression of miR29b, which was significantly inhibited in the presence of α-amanitin. The suppression of the miR29b function with a selective inhibitor abolished the anti-fibrotic effects of HLSC-EVs, resulting in the up-regulation of β-catenin and pro-fibrotic α-Sma and collagen type 1 genes. Together, these data suggest a novel HLSC-EV-dependent regulatory mechanism in which β-catenin is down regulated by HLSC-EVs-induced miR29b expression.
2021
22
19
10780
10800
Kholia S, Herrera Sanchez MB, Deregibus MC, Sassoè‐Pognetto M, Camussi G, Brizzi MF
File in questo prodotto:
File Dimensione Formato  
Microsoft Word - ijms-1346489-revised - ijms-22-10780.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 12.63 MB
Formato Adobe PDF
12.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1809614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact