Malarial pigment hemozoin (HZ) generates the lipoperoxidation product 4-hydroxynonenal (4-HNE), which is known to cause dysregulation of the immune response in malaria. The inhibition of granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent differentiation of dendritic cells (DC) by HZ and 4-HNE was previously described in vitro, and the GM-CSF receptor (GM-CSF R) was hypothesised to be a primary target of 4-HNE in monocytes. In this study, we show the functional impact of HZ on GM-CSF R in monocytes and monocyte-derived DC by (i) impairing GM-CSF binding by 50 ± 9% and 65 ± 14%, respectively (n = 3 for both cell types); (ii) decreasing the expression of GM-CSF R functional subunit (CD116) on monocyte’s surface by 36 ± 11% (n = 6) and in cell lysate by 58 ± 16% (n = 3); and (iii) binding of 4-HNE to distinct amino acid residues on CD116. The data suggest that defective DC differentiation in malaria is caused by GM-CSF R dysregulation and GM-CSF R modification by lipoperoxidation product 4-HNE via direct interaction with its CD116 subunit.
Malaria pigment hemozoin impairs gm-csf receptor expression and function by 4-hydroxynonenal
Skorokhod O.
First
;Mandili G.;Costanza F.;Valente E.;Ulliers D.;Schwarzer E.Last
2021-01-01
Abstract
Malarial pigment hemozoin (HZ) generates the lipoperoxidation product 4-hydroxynonenal (4-HNE), which is known to cause dysregulation of the immune response in malaria. The inhibition of granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent differentiation of dendritic cells (DC) by HZ and 4-HNE was previously described in vitro, and the GM-CSF receptor (GM-CSF R) was hypothesised to be a primary target of 4-HNE in monocytes. In this study, we show the functional impact of HZ on GM-CSF R in monocytes and monocyte-derived DC by (i) impairing GM-CSF binding by 50 ± 9% and 65 ± 14%, respectively (n = 3 for both cell types); (ii) decreasing the expression of GM-CSF R functional subunit (CD116) on monocyte’s surface by 36 ± 11% (n = 6) and in cell lysate by 58 ± 16% (n = 3); and (iii) binding of 4-HNE to distinct amino acid residues on CD116. The data suggest that defective DC differentiation in malaria is caused by GM-CSF R dysregulation and GM-CSF R modification by lipoperoxidation product 4-HNE via direct interaction with its CD116 subunit.File | Dimensione | Formato | |
---|---|---|---|
Skorokhod - GM CSF R CD116 HZ HNE - Antioxidants 2021.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
8.25 MB
Formato
Adobe PDF
|
8.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.