Pathocoenosis and syndemics theories have emerged in the last decades meeting the frequent need of better understanding interconnections and reciprocal influences that coexistent communicable and non-communicable diseases play in a specific population. Nevertheless, the attention to pharmacokinetic and pharmacodynamics interactions of co-administered drugs for co-pre-sent diseases is to date limitedly paid to alert against detrimental pharmacological combos. Low and middle-income countries are plagued by the highest burden of HIV, tuberculosis, malaria, and helminthiasis, and they are experiencing an alarming rise in non-communicable disorders. In these settings, co-infections and comorbidities are common, but no tailored prescribing nor clinical trials are used to assess and exploit existing opportunities for the simultaneous and potentially synergistic treatment of intertwined diseases. Pharmacoenosis is the set of interactions that take place within a host as well as within a population due to the compresence of two or more diseases and their respective treatments. This framework should pilot integrated health programmes and routine clinical practice to face drug–drug interaction issues, avoiding negative co-administrations but also exploiting potential favourable ones to make the best out of the worst situations; still, to date, guiding data on the latter possibility is limited. Therefore, in this narrative review, we have briefly described both detrimental and favourable physiopathological interactions between HIV and other common co-occurring pathologies (malaria, tuberculosis, helminths, and cardiovascular disorders), and we have presented examples of advantageous potential pharmacological interactions among the drugs prescribed for these diseases from a pharmacokinetics, pharmacodynamics, and pharmacogenetics standpoint.

The manifesto of pharmacoenosis: Merging hiv pharmacology into pathocoenosis and syndemics in developing countries

Trunfio M.
First
;
Scabini S.;Rugge W.;Alcantarini C.;Pirriatore V.;Di Perri G.;Bonora S.;Calcagno A.
Last
2021-01-01

Abstract

Pathocoenosis and syndemics theories have emerged in the last decades meeting the frequent need of better understanding interconnections and reciprocal influences that coexistent communicable and non-communicable diseases play in a specific population. Nevertheless, the attention to pharmacokinetic and pharmacodynamics interactions of co-administered drugs for co-pre-sent diseases is to date limitedly paid to alert against detrimental pharmacological combos. Low and middle-income countries are plagued by the highest burden of HIV, tuberculosis, malaria, and helminthiasis, and they are experiencing an alarming rise in non-communicable disorders. In these settings, co-infections and comorbidities are common, but no tailored prescribing nor clinical trials are used to assess and exploit existing opportunities for the simultaneous and potentially synergistic treatment of intertwined diseases. Pharmacoenosis is the set of interactions that take place within a host as well as within a population due to the compresence of two or more diseases and their respective treatments. This framework should pilot integrated health programmes and routine clinical practice to face drug–drug interaction issues, avoiding negative co-administrations but also exploiting potential favourable ones to make the best out of the worst situations; still, to date, guiding data on the latter possibility is limited. Therefore, in this narrative review, we have briefly described both detrimental and favourable physiopathological interactions between HIV and other common co-occurring pathologies (malaria, tuberculosis, helminths, and cardiovascular disorders), and we have presented examples of advantageous potential pharmacological interactions among the drugs prescribed for these diseases from a pharmacokinetics, pharmacodynamics, and pharmacogenetics standpoint.
2021
9
8
1
18
Drug-drug interactions; Helminths; HIV; Malaria; Non-communicable diseases; Pathocoenosis; Pharmacokinetics; Pharmacology; Syndemics; Tuberculosis
Trunfio M.; Scabini S.; Pinna S.M.; Rugge W.; Alcantarini C.; Pirriatore V.; Di Perri G.; Bonora S.; Castelnuovo B.; Calcagno A.
File in questo prodotto:
File Dimensione Formato  
microorganisms-09-01648-v2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1814360
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact