Background Early diagnosis is the most effective intervention to improve the prognosis of cutaneous melanoma. Even though the introduction of dermoscopy has improved the diagnostic accuracy, it can still be difficult to distinguish some melanomas from benign melanocytic lesions. Digital dermoscopy monitoring can identify dynamic changes of melanocytic lesions: To date, some algorithms were proposed, but a universally accepted one is still lacking. Objectives To identify independent predictive variables associated with the diagnosis of cutaneous melanoma and develop a multivariable dermoscopic prediction model able to discriminate benign from malignant melanocytic lesions undergoing digital dermoscopy monitoring. Methods We collected dermoscopic images of melanocytic lesions excised after dermoscopy monitoring and carried out static and dynamic evaluations of dermoscopic features. We built two multivariable predictive models based on logistic regression and random forest. Results We evaluated 173 lesions (65 cutaneous melanomas and 108 nevi). Forty-two melanomas were in situ, and the median thickness of invasive melanomas was 0.35 mm. The median follow-up time was 9.8 months for melanomas and 9.1 for nevi. The logistic regression and random forest models performed with AUC values of 0.87 and 0.89, respectively, were substantially higher than those of the static evaluation models (ABCD TDS score, 0.57; 7-point checklist, 0.59). Finally, we built two risk calculators, which translate the proposed models into user-friendly applications, to assist clinicians in the decision-making process. Conclusions The present study demonstrates that the integration of dynamic and static evaluations of melanocytic lesions is a safe approach that can significantly boost the diagnostic accuracy for cutaneous melanoma. We propose two diagnostic tools that significantly increase the accuracy in discriminating melanoma from nevi during digital dermoscopy monitoring.

Digital dermoscopy monitoring of melanocytic lesions: Two novel calculators combining static and dynamic features to identify melanoma

M Zenone
;
L Zocchi;C Moccia;T Sanavia;P Fariselli;S Ribero;M Maule;P Quaglino
2021-01-01

Abstract

Background Early diagnosis is the most effective intervention to improve the prognosis of cutaneous melanoma. Even though the introduction of dermoscopy has improved the diagnostic accuracy, it can still be difficult to distinguish some melanomas from benign melanocytic lesions. Digital dermoscopy monitoring can identify dynamic changes of melanocytic lesions: To date, some algorithms were proposed, but a universally accepted one is still lacking. Objectives To identify independent predictive variables associated with the diagnosis of cutaneous melanoma and develop a multivariable dermoscopic prediction model able to discriminate benign from malignant melanocytic lesions undergoing digital dermoscopy monitoring. Methods We collected dermoscopic images of melanocytic lesions excised after dermoscopy monitoring and carried out static and dynamic evaluations of dermoscopic features. We built two multivariable predictive models based on logistic regression and random forest. Results We evaluated 173 lesions (65 cutaneous melanomas and 108 nevi). Forty-two melanomas were in situ, and the median thickness of invasive melanomas was 0.35 mm. The median follow-up time was 9.8 months for melanomas and 9.1 for nevi. The logistic regression and random forest models performed with AUC values of 0.87 and 0.89, respectively, were substantially higher than those of the static evaluation models (ABCD TDS score, 0.57; 7-point checklist, 0.59). Finally, we built two risk calculators, which translate the proposed models into user-friendly applications, to assist clinicians in the decision-making process. Conclusions The present study demonstrates that the integration of dynamic and static evaluations of melanocytic lesions is a safe approach that can significantly boost the diagnostic accuracy for cutaneous melanoma. We propose two diagnostic tools that significantly increase the accuracy in discriminating melanoma from nevi during digital dermoscopy monitoring.
1
8
https://onlinelibrary.wiley.com/doi/abs/10.1111/jdv.17852
M Zenone, L Zocchi, C Moccia, SG Passerini, T Sanavia, P Fariselli, P Broganelli, S Ribero, M Maule, P Quaglino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1815879
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact