Interplanetary coronal mass ejection (ICME) shocks are known to accelerate particles and contribute significantly to solar energetic particle events. We have performed magnetohydrodynamic-particle in cell simulations of ICME shocks to understand the acceleration mechanism. These shocks vary in Alfvenic Mach numbers as well as in magnetic field orientations (parallel and quasi-perpendicular). We find that diffusive shock acceleration plays a significant role in accelerating particles in a parallel ICME shock. In contrast, shock drift acceleration (SDA) plays a pivotal role in a quasi-perpendicular shock. High-Mach shocks are seen to accelerate particles more efficiently. Our simulations suggest that background turbulence and local particle velocity distribution around the shock can indirectly hint at the acceleration mechanism. Our results also point toward a few possible in situ observations that could validate our understanding of the topic.

Acceleration of Solar Energetic Particles by the Shock of Interplanetary Coronal Mass Ejection

Mignone, A
2021-01-01

Abstract

Interplanetary coronal mass ejection (ICME) shocks are known to accelerate particles and contribute significantly to solar energetic particle events. We have performed magnetohydrodynamic-particle in cell simulations of ICME shocks to understand the acceleration mechanism. These shocks vary in Alfvenic Mach numbers as well as in magnetic field orientations (parallel and quasi-perpendicular). We find that diffusive shock acceleration plays a significant role in accelerating particles in a parallel ICME shock. In contrast, shock drift acceleration (SDA) plays a pivotal role in a quasi-perpendicular shock. High-Mach shocks are seen to accelerate particles more efficiently. Our simulations suggest that background turbulence and local particle velocity distribution around the shock can indirectly hint at the acceleration mechanism. Our results also point toward a few possible in situ observations that could validate our understanding of the topic.
2021
923
1
1
13
https://ui.adsabs.harvard.edu/abs/2021ApJ...923...80S/abstract
Mondal, SS; Sarkar, A; Vaidya, B; Mignone, A
File in questo prodotto:
File Dimensione Formato  
Sow_Mondal_2021_ApJ_923_80.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1827280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact