Urban systems are characterized by complexity and dynamicity. Data-driven simulations represent a promising approach in understanding and predicting complex dynamic processes in the presence of shifting demands of urban systems. Yet, today’s silo-based, de-coupled simulation engines fail to provide an end-to-end view of the complex urban system, preventing informed decision-making. In this article, we present DataStorm to support integration of existing simulation, analysis and visualization components into integrated workflows. DataStorm provides a flow engine, DataStorm-FE, for coordinating data and decision flows among multiple actors (each representing a model, analytic operation, or a decision criterion) and enables ensemble planning and optimization across cloud resources. DataStorm provides native support for simulation ensemble creation through parameter space sampling to decide which simulations to run, as well as distributed instantiation and parallel execution of simulation instances on cluster resources. Recognizing that simulation ensembles are inherently sparse relative to the potential parameter space, we also present a density-boosting partition-stitch sampling scheme to increase the effective density of the simulation ensemble through a sub-space partitioning scheme, complemented with an efficient stitching mechanism that leverages partial and imperfect knowledge from partial dynamical systems to effectively obtain a global view of the complex urban process being simulated

DataStorm: Coupled, Continuous Simulations for Complex Urban Environments

Sapino, Maria Luisa;
2021-01-01

Abstract

Urban systems are characterized by complexity and dynamicity. Data-driven simulations represent a promising approach in understanding and predicting complex dynamic processes in the presence of shifting demands of urban systems. Yet, today’s silo-based, de-coupled simulation engines fail to provide an end-to-end view of the complex urban system, preventing informed decision-making. In this article, we present DataStorm to support integration of existing simulation, analysis and visualization components into integrated workflows. DataStorm provides a flow engine, DataStorm-FE, for coordinating data and decision flows among multiple actors (each representing a model, analytic operation, or a decision criterion) and enables ensemble planning and optimization across cloud resources. DataStorm provides native support for simulation ensemble creation through parameter space sampling to decide which simulations to run, as well as distributed instantiation and parallel execution of simulation instances on cluster resources. Recognizing that simulation ensembles are inherently sparse relative to the potential parameter space, we also present a density-boosting partition-stitch sampling scheme to increase the effective density of the simulation ensemble through a sub-space partitioning scheme, complemented with an efficient stitching mechanism that leverages partial and imperfect knowledge from partial dynamical systems to effectively obtain a global view of the complex urban process being simulated
2021
2
3
1
37
https://dl.acm.org/doi/pdf/10.1145/3447572
https://dl.acm.org/doi/10.1145/3447572
Behrens, Hans Walter; Candan, K. Selçuk; Chen, Xilun; Garg, Yash; Li, Mao-Lin; Li, Xinsheng; Liu, Sicong; Sapino, Maria Luisa; Shadab, Md; Turner, Dal...espandi
File in questo prodotto:
File Dimensione Formato  
3447572.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.06 MB
Formato Adobe PDF
4.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1830235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact