In this paper we present TopTom, a digital platform whose goal is to provide analytical and visual solutions for the exploration of a dynamic corpus of user-generated messages and media articles, with the aim of i) distilling the information from thousands of documents in a low-dimensional space of explainable topics, ii) cluster them in a hierarchical fashion while allowing to drill down to details and stories as constituents of the topics, iii) spotting trends and anomalies. TopTom implements a batch processing pipeline able to run both in near-real time with time stamped data from streaming sources and on historical data with a temporal dimension in a cold start mode. The resulting output unfolds along three main axes: time, volume and semantic similarity (i.e. topic hierarchical aggregation). To allow the browsing of data in a multiscale fashion and the identification of anomalous behaviors, three visual metaphors were adopted from biological and medical fields to design visualizations, i.e. the flowing of particles in a coherent stream, tomographic cross sectioning and contrast-like analysis of biological tissues. The platform interface is composed by three main visualizations with coherent and smooth navigation interactions: calendar view, flow view, and temporal cut view. The integration of these three visual models with the multiscale analytic pipeline proposes a novel system for the identification and exploration of topics from unstructured texts. We evaluated the system using a collection of documents about the emerging opioid epidemics in the United States.

Topic tomographies (Toptom): A visual approach to distill information from media streams

Balsamo D.;
2019-01-01

Abstract

In this paper we present TopTom, a digital platform whose goal is to provide analytical and visual solutions for the exploration of a dynamic corpus of user-generated messages and media articles, with the aim of i) distilling the information from thousands of documents in a low-dimensional space of explainable topics, ii) cluster them in a hierarchical fashion while allowing to drill down to details and stories as constituents of the topics, iii) spotting trends and anomalies. TopTom implements a batch processing pipeline able to run both in near-real time with time stamped data from streaming sources and on historical data with a temporal dimension in a cold start mode. The resulting output unfolds along three main axes: time, volume and semantic similarity (i.e. topic hierarchical aggregation). To allow the browsing of data in a multiscale fashion and the identification of anomalous behaviors, three visual metaphors were adopted from biological and medical fields to design visualizations, i.e. the flowing of particles in a coherent stream, tomographic cross sectioning and contrast-like analysis of biological tissues. The platform interface is composed by three main visualizations with coherent and smooth navigation interactions: calendar view, flow view, and temporal cut view. The integration of these three visual models with the multiscale analytic pipeline proposes a novel system for the identification and exploration of topics from unstructured texts. We evaluated the system using a collection of documents about the emerging opioid epidemics in the United States.
2019
38
3
609
621
Expert search; Human-centered computing Visualization; Information systems Document topic models
Gobbo B.; Balsamo D.; Mauri M.; Bajardi P.; Panisson A.; Ciuccarelli P.
File in questo prodotto:
File Dimensione Formato  
TopTom.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 5.66 MB
Formato Adobe PDF
5.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1832041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact