Psychedelic drugs are gaining attention from the scientific community as potential new compounds for the treatment of psychiatric diseases such as mood and substance use disorders. The 5-HT2A receptor has been identified as the main molecular target, and early studies pointed to an effect on the expression of neuroplasticity genes. Analysing RNA-seq data from the prefrontal cortex of rats chronically treated with lysergic acid diethylamide (LSD), we describe the psychedelic-induced rewiring of gene co-expression networks, which become less centralised but more complex, with an overall increase in signalling entropy typical of highly plastic systems. Intriguingly, signalling entropy mirrors, at the molecular level, the increased brain entropy reported through neuroimaging studies in human, suggesting the underlying mechanisms of higher-order phenomena. Moreover, from the analysis of network topology, we identify potential transcriptional regulators and propose the involvement of different cell types in psychedelics’ activity.

Lysergic acid diethylamide induces increased signalling entropy in rats’ prefrontal cortex

Savino A.
First
;
2021-01-01

Abstract

Psychedelic drugs are gaining attention from the scientific community as potential new compounds for the treatment of psychiatric diseases such as mood and substance use disorders. The 5-HT2A receptor has been identified as the main molecular target, and early studies pointed to an effect on the expression of neuroplasticity genes. Analysing RNA-seq data from the prefrontal cortex of rats chronically treated with lysergic acid diethylamide (LSD), we describe the psychedelic-induced rewiring of gene co-expression networks, which become less centralised but more complex, with an overall increase in signalling entropy typical of highly plastic systems. Intriguingly, signalling entropy mirrors, at the molecular level, the increased brain entropy reported through neuroimaging studies in human, suggesting the underlying mechanisms of higher-order phenomena. Moreover, from the analysis of network topology, we identify potential transcriptional regulators and propose the involvement of different cell types in psychedelics’ activity.
2021
1
1
Savino A.; Nichols C.D.
File in questo prodotto:
File Dimensione Formato  
Journal of Neurochemistry - 2021 - Savino - Lysergic acid diethylamide induces increased signalling entropy in rats .pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1833178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact