Accurate livestock management can be achieved by means of predictive models. Critical factors affecting the welfare of intensive beef cattle husbandry systems can be difficult to be detected, and Machine Learning appears as a promising approach to investigate the hundreds of variables and temporal patterns lying in the data. In this article, we explore the use of Genetic Programming (GP) to build a predictive model for the performance of Piemontese beef cattle farms. In particular, we investigate the use of vectorial GP, a recently developed variant of GP, that is particularly suitable to manage data in a vectorial form. The experiments conducted on the data from 2014 to 2018 confirm that vectorial GP can outperform not only the standard version of GP but also a number of state-of-the-art Machine Learning methods, such as k-Nearest Neighbors, Generalized Linear Models, feed-forward Neural Networks, and long- and short-term memory Recurrent Neural Networks, both in terms of accuracy and generalizability. Moreover, the intrinsic ability of GP in performing an automatic feature selection, while generating interpretable predictive models, allows highlighting the main elements influencing the breeding performance.

Towards a Vectorial Approach to Predict Beef Farm Performance

Francesca Abbona
;
Mario Giacobini
2022-01-01

Abstract

Accurate livestock management can be achieved by means of predictive models. Critical factors affecting the welfare of intensive beef cattle husbandry systems can be difficult to be detected, and Machine Learning appears as a promising approach to investigate the hundreds of variables and temporal patterns lying in the data. In this article, we explore the use of Genetic Programming (GP) to build a predictive model for the performance of Piemontese beef cattle farms. In particular, we investigate the use of vectorial GP, a recently developed variant of GP, that is particularly suitable to manage data in a vectorial form. The experiments conducted on the data from 2014 to 2018 confirm that vectorial GP can outperform not only the standard version of GP but also a number of state-of-the-art Machine Learning methods, such as k-Nearest Neighbors, Generalized Linear Models, feed-forward Neural Networks, and long- and short-term memory Recurrent Neural Networks, both in terms of accuracy and generalizability. Moreover, the intrinsic ability of GP in performing an automatic feature selection, while generating interpretable predictive models, allows highlighting the main elements influencing the breeding performance.
2022
12
3
1137
1152
Francesca Abbona; Leonardo Vanneschi; Mario Giacobini
File in questo prodotto:
File Dimensione Formato  
applsci-12-01137-v2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 410.61 kB
Formato Adobe PDF
410.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1835025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact