In cold galactic molecular clouds, dust grains are coated by icy mantles and are prevalently charged negatively, because of the capture of the electrons in the gas. The interaction of the charged grains with gaseous cations is known to neutralize them. In this work, we focus on the chemical consequences of the neutralization process of HCO+, often the most abundant cation in molecular clouds. More specifically, by means of electronic structure calculations, we have characterized the energy and the structure of all possible product species once the HCO+ ion adsorbs on water clusters holding an extra electron. Two processes are possible: (i) electron transfer from the negative water cluster to the HCO+ ion or (ii) a proton transfer from HCO+ to the negative water cluster. Energetic considerations favor electron transfer. Assuming this scenario, two limiting cases have been considered in astrochemical models: (a) all the neutralized HCO+ is retained as neutral HCO adsorbed on the ice and (b) all the neutralized HCO+ gets desorbed to the gas phase as HCO. None of the two limiting cases appreciably contribute to the HCO abundance on the grain surfaces or in the gas.

Interaction of HCO+ Cations With Interstellar Negative Grains. Quantum Chemical Investigation and Astrophysical Implications

Balucani N.;Ugliengo P.
2021-01-01

Abstract

In cold galactic molecular clouds, dust grains are coated by icy mantles and are prevalently charged negatively, because of the capture of the electrons in the gas. The interaction of the charged grains with gaseous cations is known to neutralize them. In this work, we focus on the chemical consequences of the neutralization process of HCO+, often the most abundant cation in molecular clouds. More specifically, by means of electronic structure calculations, we have characterized the energy and the structure of all possible product species once the HCO+ ion adsorbs on water clusters holding an extra electron. Two processes are possible: (i) electron transfer from the negative water cluster to the HCO+ ion or (ii) a proton transfer from HCO+ to the negative water cluster. Energetic considerations favor electron transfer. Assuming this scenario, two limiting cases have been considered in astrochemical models: (a) all the neutralized HCO+ is retained as neutral HCO adsorbed on the ice and (b) all the neutralized HCO+ gets desorbed to the gas phase as HCO. None of the two limiting cases appreciably contribute to the HCO abundance on the grain surfaces or in the gas.
2021
8
1
10
astrochemical modeling; DFT; interstellar medium; solvated electron; water ice
Rimola A.; Ceccarelli C.; Balucani N.; Ugliengo P.
File in questo prodotto:
File Dimensione Formato  
6o.pdf

Accesso aperto

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1836871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact