Methoxyphenols are an important class of compounds emerging from biomass combustion, and their reactions with ozone can generate secondary organic aerosols in the atmosphere. Here, we use a vertical wetted wall flow tube reactor to evaluate the effect of ionic strength on the heterogeneous reaction of gas-phase ozone (O3) with a liquid film of o-vanillin (o-VL) (2-hydroxy-3-methoxybenzaldehyde), as a proxy for methoxyphenols. Typical for moderately acidic aerosols, at fixed pH = 5.6, the uptake coefficients (γ) of O3 on o-VL ([o-VL] = 1 × 10-5 mol L-1) increase from γ= (1.9 ± 0.1) × 10-7 in the absence of Na2SO4 to γ= (6.8 ± 0.3) × 10-7 at I = 0.2 mol L-1, and then, it decreases again. The addition of NO3- ions only slightly decreases the uptakes of O3. Ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that the formation of multicore aromatic compounds is favored upon heterogeneous O3 reaction with o-VL, in the presence of SO42- and NO3- ions. The addition of NO3- ions favors the formation of nitrooxy (-ONO2) or oxygenated nitrooxy group of organonitrates, which are components of brown carbon that can affect both climate and air quality.

Ionic Strength Effect Triggers Brown Carbon Formation through Heterogeneous Ozone Processing of Ortho-Vanillin

Vione D.;
2021-01-01

Abstract

Methoxyphenols are an important class of compounds emerging from biomass combustion, and their reactions with ozone can generate secondary organic aerosols in the atmosphere. Here, we use a vertical wetted wall flow tube reactor to evaluate the effect of ionic strength on the heterogeneous reaction of gas-phase ozone (O3) with a liquid film of o-vanillin (o-VL) (2-hydroxy-3-methoxybenzaldehyde), as a proxy for methoxyphenols. Typical for moderately acidic aerosols, at fixed pH = 5.6, the uptake coefficients (γ) of O3 on o-VL ([o-VL] = 1 × 10-5 mol L-1) increase from γ= (1.9 ± 0.1) × 10-7 in the absence of Na2SO4 to γ= (6.8 ± 0.3) × 10-7 at I = 0.2 mol L-1, and then, it decreases again. The addition of NO3- ions only slightly decreases the uptakes of O3. Ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that the formation of multicore aromatic compounds is favored upon heterogeneous O3 reaction with o-VL, in the presence of SO42- and NO3- ions. The addition of NO3- ions favors the formation of nitrooxy (-ONO2) or oxygenated nitrooxy group of organonitrates, which are components of brown carbon that can affect both climate and air quality.
2021
Inglese
Esperti anonimi
55
8
4553
4564
12
Aerosols; Benzaldehydes; Carbon; Osmolar Concentration; Ozone
REPUBBLICA POPOLARE CINESE
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
9
Wang Y.; Mekic M.; Li P.; Deng H.; Liu S.; Jiang B.; Jin B.; Vione D.; Gligorovski S.
info:eu-repo/semantics/article
partially_open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Yiqun-et-al.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
ES&T2021_Vanillin.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1838100
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact