The effectiveness of Agar gels for copper stain removal from marble surfaces was systematically studied. Gels with different agar concentrations (1, 3, 5%) and different chelating agents used as additives (ethylenediaminetetraacetic acid, EDTA, and ammonium citrate tribasic, TAC) were tested on laboratory marble specimens for different contact times (30 and 60 min). For better characterization, hydrogels were lyophilised and cryogels were obtained. Systematic comparison of different formulations was feasible on cryogels and performed in terms of: (i) the morphological properties, by field-emission scanning electron microscopy (FE-SEM); (ii) the type of Cu(II)-complexes formed and their quantitative comparison by electron paramagnetic resonance (EPR) spectroscopy; (iii) the total amount of copper removed from marble surfaces, by Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES). AgarArt 1% with TAC exhibited the highest effectiveness for copper stain removal after 60 min contact (431 μg/cm2). Such a good cleaning effectiveness can be ascribed to the co-presence of the following properties: efficient metal coordination, which is related to the additive presence, and favourable gel morphology, related both to the gel concentration and to the additive type. In fact, it was observed that both the low gel concentration and the presence of TAC are related to a narrow pore size distribution in gels, besides the possibility of copper coordination. The presence of EDTA results in a broader pore size distribution and in a lower gel strength, with respect to gels with TAC. Thus, a new procedure for studying gels was proposed, which allows to optimize the conditions for metal stain removal from built heritage.

An in-depth study on the agar gel effectiveness for built heritage cleaning

Bertasa M.;Malandrino M.;Scalarone D.
2021-01-01

Abstract

The effectiveness of Agar gels for copper stain removal from marble surfaces was systematically studied. Gels with different agar concentrations (1, 3, 5%) and different chelating agents used as additives (ethylenediaminetetraacetic acid, EDTA, and ammonium citrate tribasic, TAC) were tested on laboratory marble specimens for different contact times (30 and 60 min). For better characterization, hydrogels were lyophilised and cryogels were obtained. Systematic comparison of different formulations was feasible on cryogels and performed in terms of: (i) the morphological properties, by field-emission scanning electron microscopy (FE-SEM); (ii) the type of Cu(II)-complexes formed and their quantitative comparison by electron paramagnetic resonance (EPR) spectroscopy; (iii) the total amount of copper removed from marble surfaces, by Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES). AgarArt 1% with TAC exhibited the highest effectiveness for copper stain removal after 60 min contact (431 μg/cm2). Such a good cleaning effectiveness can be ascribed to the co-presence of the following properties: efficient metal coordination, which is related to the additive presence, and favourable gel morphology, related both to the gel concentration and to the additive type. In fact, it was observed that both the low gel concentration and the presence of TAC are related to a narrow pore size distribution in gels, besides the possibility of copper coordination. The presence of EDTA results in a broader pore size distribution and in a lower gel strength, with respect to gels with TAC. Thus, a new procedure for studying gels was proposed, which allows to optimize the conditions for metal stain removal from built heritage.
2021
47
12
20
Agar gel; Built heritage; Cleaning effectiveness; Copper stains; Lyophilisation
Bertasa M.; Canevali C.; Sansonetti A.; Lazzari M.; Malandrino M.; Simonutti R.; Scalarone D.
File in questo prodotto:
File Dimensione Formato  
2021 JCH_OpenAccess.pdf

Accesso aperto

Descrizione: Articolo completo
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
JCulHeritage2021.pdf

Accesso riservato

Descrizione: Articolo completo
Tipo di file: PDF EDITORIALE
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1838960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact