European and national waste directives prioritize recycling of wastes, as well as material and energy recovery from wastes themselves. Bio-waste fraction can be converted into new resources whose quality is strictly dependent upon that of waste feedstock. Methods to evaluate the contamination from organic micropollutants in bio-waste are rarely investigated. The aim of this work was to develop an innovative analytical method for the extraction and quantification of 16 polycyclic aromatic hydrocarbons (PAHs) and 14 polychlorinated biphenyls (PCBs, including dioxin-like compounds) in bio-waste. Through a full-factorial experimental design, a microwave-assisted extraction technique was optimized to extract the thirty targeted micropollutants, studying the effect of cyclohexane and dichloromethane as extraction solvents with or without acetone, and of extraction temperature. Purification of the extract was obtained by a silica-based solid-phase extraction cartridge, followed by a sulfuric acid treatment. The analysis was carried out by gas chromatography coupled with mass spectrometry. The optimized method, validated directly in the bio-waste matrix fortified with isotopically marked surrogates, is characterized by good extraction recoveries, included within 47 and 106% (relative standard deviations <10%), by satisfactory intra-day (<1.1%) and inter-day (<9.3%) precision, and by low matrix effect (<17%), despite the complexity of the matrix. The optimized procedure, applied to the analysis of PAHs and PCBs in a bio-waste sample collected from a local anaerobic digestion and composting plant, showed a total PAHs content of 562 μg/kg. As regards PCBs, the dioxin-like congener PCB 118 was the only compound quantified (25 ± 6 μg kg−1).
Microwave-assisted extraction and gas chromatographic determination of thirty priority micropollutants in biowaste fraction derived from municipal solid waste for material recovery in the circular-economy approach
Rivoira L.;Castiglioni M.;Bruzzoniti M. C.
2022-01-01
Abstract
European and national waste directives prioritize recycling of wastes, as well as material and energy recovery from wastes themselves. Bio-waste fraction can be converted into new resources whose quality is strictly dependent upon that of waste feedstock. Methods to evaluate the contamination from organic micropollutants in bio-waste are rarely investigated. The aim of this work was to develop an innovative analytical method for the extraction and quantification of 16 polycyclic aromatic hydrocarbons (PAHs) and 14 polychlorinated biphenyls (PCBs, including dioxin-like compounds) in bio-waste. Through a full-factorial experimental design, a microwave-assisted extraction technique was optimized to extract the thirty targeted micropollutants, studying the effect of cyclohexane and dichloromethane as extraction solvents with or without acetone, and of extraction temperature. Purification of the extract was obtained by a silica-based solid-phase extraction cartridge, followed by a sulfuric acid treatment. The analysis was carried out by gas chromatography coupled with mass spectrometry. The optimized method, validated directly in the bio-waste matrix fortified with isotopically marked surrogates, is characterized by good extraction recoveries, included within 47 and 106% (relative standard deviations <10%), by satisfactory intra-day (<1.1%) and inter-day (<9.3%) precision, and by low matrix effect (<17%), despite the complexity of the matrix. The optimized procedure, applied to the analysis of PAHs and PCBs in a bio-waste sample collected from a local anaerobic digestion and composting plant, showed a total PAHs content of 562 μg/kg. As regards PCBs, the dioxin-like congener PCB 118 was the only compound quantified (25 ± 6 μg kg−1).File | Dimensione | Formato | |
---|---|---|---|
Author Copy.pdf
Accesso riservato
Descrizione: File pdf editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Paper_Bruzzoniti at al_revised_ clean copy.pdf
Open Access dal 29/01/2024
Descrizione: File per open access
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
521.61 kB
Formato
Adobe PDF
|
521.61 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.