We consider the N= 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very non-trivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling λ. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |λ| < π2 of the latter.
Exact results in a N = 2 superconformal gauge theory at strong coupling
Marco Billo'
;Marialuisa Frau
;
2021-01-01
Abstract
We consider the N= 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very non-trivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling λ. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |λ| < π2 of the latter.File | Dimensione | Formato | |
---|---|---|---|
Beccaria2021_Article_ExactResultsInANMathcalN2Super.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
914.54 kB
Formato
Adobe PDF
|
914.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.