Sphingosine 1 phosphate (S1P) is a bioactive sphingolipid that exerts several functions in physiological and pathological conditions. The modulation of one of its receptors, S1P1, plays an important role in the egress of lymphocytes from lymph nodes and is a useful target in multiple sclerosis (MS) treatment. A new drug, siponimod (BAF-312) has been recently approved for the treatment of secondary progressive MS and has affinity for two S1P receptors, S1P1 and S1P5. The two receptors are expressed by endothelial cells that, as components of the blood–brain barrier (BBB), prevent the access of solutes and lymphocytes into the central nervous system, function often compromised in MS. Using an in vitro BBB model exposed to inflammatory cytokines (TNFα and IFNγ, 5 UI and 10 UI respectively), we evaluated the effects of BAF-312 (100 nM) on expression and function of endothelial tight junctional proteins (Zo-1 and claudin-5), regulation of transendothelial electrical resistance (TEER) and permeability to FITC-conjugated dextran. Zo-1 expression, as well as TEER values, were promptly recovered (24 h) when both S1P1 and S1P5 were activated by BAF-312. In contrast, at this time point, activation of S1P5 with the selective agonist UC-42-WP04 (300 nM) or with BAF-312, under blockade of S1P1 with the selective antagonist NIBR-0213 (1 μM), resulted in recovery of expression and localization of claudin-5 and reduction of TNFα/INFγ-induced expression of metalloproteinase 9. Only after a prolonged BAF-312 exposure (48 h), S1P1 was involved through activation of the PI3K/Akt pathway. The PI3K inhibitor LY294002 (10 µM) prevented in fact the effects of BAF-312 on all the parameters examined. In conclusion, BAF-312, by modulating both S1P1 and S1P5, may strengthen BBB properties, thus providing additional effects in the treatment of MS.
Protective effect of the sphingosine-1 phosphate receptor agonist siponimodon disrupted blood brain barrier function
Spampinato S. F.First
;
2021-01-01
Abstract
Sphingosine 1 phosphate (S1P) is a bioactive sphingolipid that exerts several functions in physiological and pathological conditions. The modulation of one of its receptors, S1P1, plays an important role in the egress of lymphocytes from lymph nodes and is a useful target in multiple sclerosis (MS) treatment. A new drug, siponimod (BAF-312) has been recently approved for the treatment of secondary progressive MS and has affinity for two S1P receptors, S1P1 and S1P5. The two receptors are expressed by endothelial cells that, as components of the blood–brain barrier (BBB), prevent the access of solutes and lymphocytes into the central nervous system, function often compromised in MS. Using an in vitro BBB model exposed to inflammatory cytokines (TNFα and IFNγ, 5 UI and 10 UI respectively), we evaluated the effects of BAF-312 (100 nM) on expression and function of endothelial tight junctional proteins (Zo-1 and claudin-5), regulation of transendothelial electrical resistance (TEER) and permeability to FITC-conjugated dextran. Zo-1 expression, as well as TEER values, were promptly recovered (24 h) when both S1P1 and S1P5 were activated by BAF-312. In contrast, at this time point, activation of S1P5 with the selective agonist UC-42-WP04 (300 nM) or with BAF-312, under blockade of S1P1 with the selective antagonist NIBR-0213 (1 μM), resulted in recovery of expression and localization of claudin-5 and reduction of TNFα/INFγ-induced expression of metalloproteinase 9. Only after a prolonged BAF-312 exposure (48 h), S1P1 was involved through activation of the PI3K/Akt pathway. The PI3K inhibitor LY294002 (10 µM) prevented in fact the effects of BAF-312 on all the parameters examined. In conclusion, BAF-312, by modulating both S1P1 and S1P5, may strengthen BBB properties, thus providing additional effects in the treatment of MS.File | Dimensione | Formato | |
---|---|---|---|
Spampinato et al.,2021_BP.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
12.53 MB
Formato
Adobe PDF
|
12.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.