Sphingosine 1 phosphate (S1P) is a bioactive sphingolipid that exerts several functions in physiological and pathological conditions. The modulation of one of its receptors, S1P1, plays an important role in the egress of lymphocytes from lymph nodes and is a useful target in multiple sclerosis (MS) treatment. A new drug, siponimod (BAF-312) has been recently approved for the treatment of secondary progressive MS and has affinity for two S1P receptors, S1P1 and S1P5. The two receptors are expressed by endothelial cells that, as components of the blood–brain barrier (BBB), prevent the access of solutes and lymphocytes into the central nervous system, function often compromised in MS. Using an in vitro BBB model exposed to inflammatory cytokines (TNFα and IFNγ, 5 UI and 10 UI respectively), we evaluated the effects of BAF-312 (100 nM) on expression and function of endothelial tight junctional proteins (Zo-1 and claudin-5), regulation of transendothelial electrical resistance (TEER) and permeability to FITC-conjugated dextran. Zo-1 expression, as well as TEER values, were promptly recovered (24 h) when both S1P1 and S1P5 were activated by BAF-312. In contrast, at this time point, activation of S1P5 with the selective agonist UC-42-WP04 (300 nM) or with BAF-312, under blockade of S1P1 with the selective antagonist NIBR-0213 (1 μM), resulted in recovery of expression and localization of claudin-5 and reduction of TNFα/INFγ-induced expression of metalloproteinase 9. Only after a prolonged BAF-312 exposure (48 h), S1P1 was involved through activation of the PI3K/Akt pathway. The PI3K inhibitor LY294002 (10 µM) prevented in fact the effects of BAF-312 on all the parameters examined. In conclusion, BAF-312, by modulating both S1P1 and S1P5, may strengthen BBB properties, thus providing additional effects in the treatment of MS.

Protective effect of the sphingosine-1 phosphate receptor agonist siponimodon disrupted blood brain barrier function

Spampinato S. F.
First
;
2021-01-01

Abstract

Sphingosine 1 phosphate (S1P) is a bioactive sphingolipid that exerts several functions in physiological and pathological conditions. The modulation of one of its receptors, S1P1, plays an important role in the egress of lymphocytes from lymph nodes and is a useful target in multiple sclerosis (MS) treatment. A new drug, siponimod (BAF-312) has been recently approved for the treatment of secondary progressive MS and has affinity for two S1P receptors, S1P1 and S1P5. The two receptors are expressed by endothelial cells that, as components of the blood–brain barrier (BBB), prevent the access of solutes and lymphocytes into the central nervous system, function often compromised in MS. Using an in vitro BBB model exposed to inflammatory cytokines (TNFα and IFNγ, 5 UI and 10 UI respectively), we evaluated the effects of BAF-312 (100 nM) on expression and function of endothelial tight junctional proteins (Zo-1 and claudin-5), regulation of transendothelial electrical resistance (TEER) and permeability to FITC-conjugated dextran. Zo-1 expression, as well as TEER values, were promptly recovered (24 h) when both S1P1 and S1P5 were activated by BAF-312. In contrast, at this time point, activation of S1P5 with the selective agonist UC-42-WP04 (300 nM) or with BAF-312, under blockade of S1P1 with the selective antagonist NIBR-0213 (1 μM), resulted in recovery of expression and localization of claudin-5 and reduction of TNFα/INFγ-induced expression of metalloproteinase 9. Only after a prolonged BAF-312 exposure (48 h), S1P1 was involved through activation of the PI3K/Akt pathway. The PI3K inhibitor LY294002 (10 µM) prevented in fact the effects of BAF-312 on all the parameters examined. In conclusion, BAF-312, by modulating both S1P1 and S1P5, may strengthen BBB properties, thus providing additional effects in the treatment of MS.
2021
186
1
10
BAF-312; Endothelial cells; Permeability; S1P1; S1P5; Tight junctions
Spampinato S. F.; Merlo S.; Sano Y.; Kanda T.; Sortino M. A.
File in questo prodotto:
File Dimensione Formato  
Spampinato et al.,2021_BP.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 12.53 MB
Formato Adobe PDF
12.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1840993
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact