We compare a particular selection of approximate solutions of the Riemann problem in the context of ideal relativistic magnetohydrodynamics. In particular, we focus on Riemann solvers not requiring a full eigenvector structure. Such solvers recover the solution of the Riemann problem by solving a simplified or reduced set of jump conditions, whose level of complexity depends on the intermediate modes that are included. Five different approaches - namely the HLL, HLLC, HLLD, HLLEM, and GFORCE schemes - are compared in terms of accuracy and robustness against one - and multidimensional standard numerical benchmarks. Our results demonstrate that - for weak or moderate magnetizations - the HLLD Riemann solver yields the most accurate results, followed by HLLC solver(s). The GFORCE approach provides a valid alternative to the HLL solver being less dissipative and equally robust for strongly magnetized environments. Finally, our tests show that the HLLEM Riemann solver is not cost-effective in improving the accuracy of the solution and reducing the numerical dissipation.
A comparison of approximate non-linear Riemann solvers for Relativistic MHD
Mignone, A
2022-01-01
Abstract
We compare a particular selection of approximate solutions of the Riemann problem in the context of ideal relativistic magnetohydrodynamics. In particular, we focus on Riemann solvers not requiring a full eigenvector structure. Such solvers recover the solution of the Riemann problem by solving a simplified or reduced set of jump conditions, whose level of complexity depends on the intermediate modes that are included. Five different approaches - namely the HLL, HLLC, HLLD, HLLEM, and GFORCE schemes - are compared in terms of accuracy and robustness against one - and multidimensional standard numerical benchmarks. Our results demonstrate that - for weak or moderate magnetizations - the HLLD Riemann solver yields the most accurate results, followed by HLLC solver(s). The GFORCE approach provides a valid alternative to the HLL solver being less dissipative and equally robust for strongly magnetized environments. Finally, our tests show that the HLLEM Riemann solver is not cost-effective in improving the accuracy of the solution and reducing the numerical dissipation.File | Dimensione | Formato | |
---|---|---|---|
2022.Mattia_Mignone.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.