Virtual Reality (VR) is a computer-based simulation designed to expose users to environments in order to replicate real world objects and events. In this framework, video games are one of the most popular forms of VR media all over the worlds. Their popularity has been fuelled by advancements in gaming technology and interactive devices at a low cost in home gaming market but also in clinical and research settings. In clinical and research virtual rehabilitation, the user should be able to interact (directly or indirectly) with the environment via a wide array of input technologies. These include activation of computer keyboard keys, a mouse or a joypad (indirect) and even by using special sensors or visual tracking (direct). For example, Microsoft Kinect provides low-cost motion tracking sensors, allowing to clinicians to interact with rehabilitation applications in the most natural and flexible way. This flexibility can be employed to tailor the user interaction to the specific rehabilitation user aims. According to this perspective, the paper aims to present a potential new platform, NeuroVirtual3D, which intends to develop a software interface for supporting assessment and rehabilitation of cognition function through several input/output devices, such as data gloves, joypad and Microsoft Kinect.

Low-Cost Motion-Tracking for Computational Psychometrics Based on Virtual Reality

Cipresso, Pietro;
2014-01-01

Abstract

Virtual Reality (VR) is a computer-based simulation designed to expose users to environments in order to replicate real world objects and events. In this framework, video games are one of the most popular forms of VR media all over the worlds. Their popularity has been fuelled by advancements in gaming technology and interactive devices at a low cost in home gaming market but also in clinical and research settings. In clinical and research virtual rehabilitation, the user should be able to interact (directly or indirectly) with the environment via a wide array of input technologies. These include activation of computer keyboard keys, a mouse or a joypad (indirect) and even by using special sensors or visual tracking (direct). For example, Microsoft Kinect provides low-cost motion tracking sensors, allowing to clinicians to interact with rehabilitation applications in the most natural and flexible way. This flexibility can be employed to tailor the user interaction to the specific rehabilitation user aims. According to this perspective, the paper aims to present a potential new platform, NeuroVirtual3D, which intends to develop a software interface for supporting assessment and rehabilitation of cognition function through several input/output devices, such as data gloves, joypad and Microsoft Kinect.
2014
Augmented and Virtual Reality
Springer International Publishing
137
148
978-3-319-13968-5
Virtual Reality; Computational Psychometrics
Cipresso, Pietro; Serino, Silvia; Giglioli Chicchi, Irene Alice; Giuliano, Igor; Borra, Davide; Farina, Andrea; Riva, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1842399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact