Various studies reported an elevation dependent precipitation and temperature changes in mountainous regions of the world including the Himalayas. Various mechanisms are proposed to link the possible dependence of the precipitation and temperature on elevation with other variables, including, long- and short-wave radiation, albedo, clouds, humidity, etc. In the present study changes and trends of precipitation and temperature at different elevation ranges in the Indian Himalayan region (IHR) is assessed. Observations and modelling fields during the period 1970–2099 are used. Modelling simulations from the Coordinated Regional Climate Downscaling Experiment-South Asia experiments (CORDEX-SA) suites are considered. In addition, four seasons—winter (Dec, Jan, Feb: DJF), pre-monsoon (Mar, Apr, May: MAM), monsoon (Jun, Jul, Aug, Sep: JJAS) and post-monsoon (Oct, Nov: ON)—are considered to detect the possible seasonal response of elevation dependency. Firstly, precipitation and temperature fields, separately, as well as the diurnal temperature range (DTR) are assessed. Following, their long-term trends are investigated, if varying, at different elevational ranges in the IHR. To explain plausible physical mechanisms due to elevation dependency, trend of other variables viz., surface downward longwave radiation (DLR), total cloud faction, soil moisture, near surface specific humidity, surface snow melt and surface albedo, etc. are investigated. Results point towards an decreased (increased) precipitation in higher (lower) elevation. And amplified warming signals at higher elevations (above 3000 m), both in daytime and nighttime temperatures, during all seasons except the monsoon, are noticed. Increased DLR trends at higher elevation are also simulated well by the model and are likely the main elevation dependent driver in the IHR.

Elevation dependent precipitation and temperature changes over Indian Himalayan region

Palazzi E.;
2022-01-01

Abstract

Various studies reported an elevation dependent precipitation and temperature changes in mountainous regions of the world including the Himalayas. Various mechanisms are proposed to link the possible dependence of the precipitation and temperature on elevation with other variables, including, long- and short-wave radiation, albedo, clouds, humidity, etc. In the present study changes and trends of precipitation and temperature at different elevation ranges in the Indian Himalayan region (IHR) is assessed. Observations and modelling fields during the period 1970–2099 are used. Modelling simulations from the Coordinated Regional Climate Downscaling Experiment-South Asia experiments (CORDEX-SA) suites are considered. In addition, four seasons—winter (Dec, Jan, Feb: DJF), pre-monsoon (Mar, Apr, May: MAM), monsoon (Jun, Jul, Aug, Sep: JJAS) and post-monsoon (Oct, Nov: ON)—are considered to detect the possible seasonal response of elevation dependency. Firstly, precipitation and temperature fields, separately, as well as the diurnal temperature range (DTR) are assessed. Following, their long-term trends are investigated, if varying, at different elevational ranges in the IHR. To explain plausible physical mechanisms due to elevation dependency, trend of other variables viz., surface downward longwave radiation (DLR), total cloud faction, soil moisture, near surface specific humidity, surface snow melt and surface albedo, etc. are investigated. Results point towards an decreased (increased) precipitation in higher (lower) elevation. And amplified warming signals at higher elevations (above 3000 m), both in daytime and nighttime temperatures, during all seasons except the monsoon, are noticed. Increased DLR trends at higher elevation are also simulated well by the model and are likely the main elevation dependent driver in the IHR.
2022
1
21
Cloud feedback; Downward longwave radiation; Elevation dependent precipitation change; Elevation dependent warming; Indian Himalayan region; Snow melt; Snow-albedo feedback
Dimri A.P.; Palazzi E.; Daloz A.S.
File in questo prodotto:
File Dimensione Formato  
Dimri2022_Article_ElevationDependentPrecipitatio.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 6.65 MB
Formato Adobe PDF
6.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1844049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact