Fully-autonomous vehicles, both aerial and ground, could provide great benefits in the Agriculture 4.0 framework when operating within cooperative architectures, thanks to their ability to tackle difficult tasks, particularly within complex irregular and unstructured scenarios such as vineyards on sloped terrains. A decentralised multi-phase approach has been proposed as an alternative to more common cooperative schemes. When perennial crops are considered, it is advantageous to build a simplified geometrical (and georeferenced) crops model, which can be identified by using 3D point clouds acquired during a-priori explorative missions by unmanned aerial vehicles. This model can be used to plan the tasks to be performed within the crops by the in-field aerial and ground drones. In this companion paper, the proposed strategy is applied to a specific case study involving a vineyard on a sloped terrain, located in the Barolo region in Piedmont, Italy. Ad-hoc technologies and guidance, navigation and control algorithms were designed and implemented. The main objectives were to improve the autonomous driving capabilities of the drones involved and to automate the process of retrieving low-complexity maps from the data collected with preliminary remote sensing missions to make them available for the autonomous navigation by a quadrotor and an unmanned 4-wheel steering ground vehicle within the vine rows. Preliminary results highlight the benefits achievable by exploiting the tailored technologies selected and applied to improve each of the analysed mission phases.
Cooperation of unmanned systems for agricultural applications: A case study in a vineyard
Comba L.
;Biglia A.;Gay P.Last
2022-01-01
Abstract
Fully-autonomous vehicles, both aerial and ground, could provide great benefits in the Agriculture 4.0 framework when operating within cooperative architectures, thanks to their ability to tackle difficult tasks, particularly within complex irregular and unstructured scenarios such as vineyards on sloped terrains. A decentralised multi-phase approach has been proposed as an alternative to more common cooperative schemes. When perennial crops are considered, it is advantageous to build a simplified geometrical (and georeferenced) crops model, which can be identified by using 3D point clouds acquired during a-priori explorative missions by unmanned aerial vehicles. This model can be used to plan the tasks to be performed within the crops by the in-field aerial and ground drones. In this companion paper, the proposed strategy is applied to a specific case study involving a vineyard on a sloped terrain, located in the Barolo region in Piedmont, Italy. Ad-hoc technologies and guidance, navigation and control algorithms were designed and implemented. The main objectives were to improve the autonomous driving capabilities of the drones involved and to automate the process of retrieving low-complexity maps from the data collected with preliminary remote sensing missions to make them available for the autonomous navigation by a quadrotor and an unmanned 4-wheel steering ground vehicle within the vine rows. Preliminary results highlight the benefits achievable by exploiting the tailored technologies selected and applied to improve each of the analysed mission phases.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1537511021003111-main.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
7.65 MB
Formato
Adobe PDF
|
7.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.