In this work, we develop Non-Intrusive Reduced Order Models (NIROMs) that combine Proper Orthogonal Decomposition (POD) with a Radial Basis Function (RBF) interpolation method to construct efficient reduced order models for time-dependent problems arising in large scale environmental flow applications. The performance of the POD-RBF NIROM is compared with a traditional nonlinear POD (NPOD) model by evaluating the accuracy and robustness for test problems representative of riverine flows. Different greedy algorithms are studied in order to determine a near-optimal distribution of interpolation points for the RBF approximation. A new power-scaled residual greedy (psr-greedy) algorithm is proposed to address some of the primary drawbacks of the existing greedy approaches. The relative performances of these greedy algorithms are studied with numerical experiments using realistic two-dimensional (2D) shallow water flow applications involving coastal and riverine dynamics.

A greedy non-intrusive reduced order model for shallow water equations

Perracchione E.;
2021-01-01

Abstract

In this work, we develop Non-Intrusive Reduced Order Models (NIROMs) that combine Proper Orthogonal Decomposition (POD) with a Radial Basis Function (RBF) interpolation method to construct efficient reduced order models for time-dependent problems arising in large scale environmental flow applications. The performance of the POD-RBF NIROM is compared with a traditional nonlinear POD (NPOD) model by evaluating the accuracy and robustness for test problems representative of riverine flows. Different greedy algorithms are studied in order to determine a near-optimal distribution of interpolation points for the RBF approximation. A new power-scaled residual greedy (psr-greedy) algorithm is proposed to address some of the primary drawbacks of the existing greedy approaches. The relative performances of these greedy algorithms are studied with numerical experiments using realistic two-dimensional (2D) shallow water flow applications involving coastal and riverine dynamics.
2021
439
1
30
Greedy algorithms; Non-intrusive reduced order model; Proper orthogonal decomposition; Radial basis function interpolation; Shallow water equations
Dutta S.; Farthing M.W.; Perracchione E.; Savant G.; Putti M.
File in questo prodotto:
File Dimensione Formato  
JCP2021.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1844670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact