We consider systems of interacting Generalized Friedman's Urns (GFUs) having irreducible mean replacement matrices. The interaction is modeled through the probability to sample the colors from each urn, that is defined as convex combination of the urn proportions in the system. From the weights of these combinations we individuate subsystems of urns evolving with different behaviors. We provide a complete description of the asymptotic properties of urn proportions in each subsystem by establishing limiting proportions, convergence rates and Central Limit Theorems. The main proofs are based on a detailed eigenanalysis and stochastic approximation techniques.

Interacting generalized Friedman's urn systems

Ghiglietti, Andrea
2017-01-01

Abstract

We consider systems of interacting Generalized Friedman's Urns (GFUs) having irreducible mean replacement matrices. The interaction is modeled through the probability to sample the colors from each urn, that is defined as convex combination of the urn proportions in the system. From the weights of these combinations we individuate subsystems of urns evolving with different behaviors. We provide a complete description of the asymptotic properties of urn proportions in each subsystem by establishing limiting proportions, convergence rates and Central Limit Theorems. The main proofs are based on a detailed eigenanalysis and stochastic approximation techniques.
2017
Inglese
Esperti anonimi
127
8
2650
2678
29
http://www.sciencedirect.com/science/article/pii/S0304414916302204
Interacting systems; Urn models; Strong consistency; Central Limit Theorems; Stochastic approximation
no
2 – prodotto con deroga d’ufficio (SOLO se editore non consente/non ha risposto)
262
2
Aletti, Giacomo; Ghiglietti, Andrea
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1846462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact