Introduction: Among the different mechanisms of acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) reported in EGFR-mutated lung adenocarcinoma (EGFR-LUAD) patients, histological transformation into small cell carcinoma (SCLC) occurs in 3–14% of resistant cases, regardless of the generation of EGFR-TKI. In recent studies, bi-allelic inactivation of TP53 and RB1 has been identified in a vast majority of transformed SCLCs. However, the molecular mechanisms driving this histologic transformation remain largely unknown, mainly due to the rarity of samples. Patients and methods: Out of an initial cohort of 64 patients, tumor tissues of adequate quality and quantity for whole exome sequencing (WES) analysis were available for nine tumors for six patients: paired pre- and post-SCLC transformation samples for three Patients and post-SCLC transformation samples for three other patients. Results: Mutational analyses showed concurrent TP53 mutations and Rb pathway alterations in five of the six patients analyzed, confirming their suggested role as predisposing genetic alterations to SCLC transformation. In addition, TERT amplification was detected in four of the six patients and found to be an event acquired during SCLC transformation. Clonal history evolution analyses from the paired LUAD/SCLC samples showed different evolution patterns. In two patients, a large proportion of mutations were present in the most recent common ancestor cell of the initial LUAD and the transformed SCLC clones, whereas in the third patient, few clonal mutations were common between the LUAD and SCLC samples and the ancestor clone that lead to SCLC was present at low frequency in the initial LUAD. Conclusion: Despite varied clinical presentations and clonal history evolution patterns, in addition to p53 and Rb pathways alterations, TERT amplification emerged as another common genetic mechanism of EGFR-LUAD to SCLC transformation in our cohort, and could represent a candidate therapeutic target in this subset of SCLC tumors.

Detection of acquired TERT amplification in addition to predisposing p53 and Rb pathways alterations in EGFR-mutant lung adenocarcinomas transformed into small-cell lung cancers

Novello S.;Giaj Levra M.;
2022-01-01

Abstract

Introduction: Among the different mechanisms of acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) reported in EGFR-mutated lung adenocarcinoma (EGFR-LUAD) patients, histological transformation into small cell carcinoma (SCLC) occurs in 3–14% of resistant cases, regardless of the generation of EGFR-TKI. In recent studies, bi-allelic inactivation of TP53 and RB1 has been identified in a vast majority of transformed SCLCs. However, the molecular mechanisms driving this histologic transformation remain largely unknown, mainly due to the rarity of samples. Patients and methods: Out of an initial cohort of 64 patients, tumor tissues of adequate quality and quantity for whole exome sequencing (WES) analysis were available for nine tumors for six patients: paired pre- and post-SCLC transformation samples for three Patients and post-SCLC transformation samples for three other patients. Results: Mutational analyses showed concurrent TP53 mutations and Rb pathway alterations in five of the six patients analyzed, confirming their suggested role as predisposing genetic alterations to SCLC transformation. In addition, TERT amplification was detected in four of the six patients and found to be an event acquired during SCLC transformation. Clonal history evolution analyses from the paired LUAD/SCLC samples showed different evolution patterns. In two patients, a large proportion of mutations were present in the most recent common ancestor cell of the initial LUAD and the transformed SCLC clones, whereas in the third patient, few clonal mutations were common between the LUAD and SCLC samples and the ancestor clone that lead to SCLC was present at low frequency in the initial LUAD. Conclusion: Despite varied clinical presentations and clonal history evolution patterns, in addition to p53 and Rb pathways alterations, TERT amplification emerged as another common genetic mechanism of EGFR-LUAD to SCLC transformation in our cohort, and could represent a candidate therapeutic target in this subset of SCLC tumors.
2022
167
98
106
CCND1; EGFR; Histological transformation; Lung adenocarcinoma; RB1; Small-cell lung carcinoma; TERT; TP53
Mc Leer A.; Foll M.; Brevet M.; Antoine M.; Novello S.; Mondet J.; Cadranel J.; Girard N.; Giaj Levra M.; Demontrond P.; Audigier-Valette C.; Letouze E.; Lantuejoul S.; Fernandez-Cuesta L.; Moro-Sibilot D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1849586
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact