The aim of this in vitro study is to evaluate the effect of different acidic media on volumetric wear and surface roughness of CAD/CAM monolithic materials. Forty-eight rectangular specimens were prepared using different CAD/CAM monolithic materials: nanohybrid composite (Grandio Blocks, Voco), resin-based composite (Cerasmart, GC), lithium disilicate (E-Max, Ivoclar), and high-translucency zirconia (Katana STML, Kuraray Noritake). After storage in distilled water at 37◦ C for two days, the specimens were tested using a chewing machine with a stainless-steel ball as an antagonist (49N loads, 250,000 cycles). Testing was performed using distilled water, Coca-Cola, and Red Bull as abrasive media. Wear and surface roughness analyses of the CAD/CAM materials were performed using a 3D profilometer and analyzed with two-way analysis of variance and post hoc pairwise comparison procedures. Worn surfaces were examined using scanning electron microscopy. Resin-based materials suffered higher volumetric wear than ceramics (p = 0.00001). Water induced significantly less volumetric wear than the other tested solutions (p = 0.0014), independent of the material tested. High-translucency zirconia showed less surface roughness than all the other materials tested. The selection of monolithic CAD/CAM materials to restore worn dentition due to erosive processes could impact restorative therapy stability over time. Resin-based materials seem to be more influenced by the acidic environment when subjected to a two-body wear test.

Influence of low-ph beverages on the two-body wear of cad/cam monolithic materials

Scotti N.;Comba A.;Baldi A.;
2021-01-01

Abstract

The aim of this in vitro study is to evaluate the effect of different acidic media on volumetric wear and surface roughness of CAD/CAM monolithic materials. Forty-eight rectangular specimens were prepared using different CAD/CAM monolithic materials: nanohybrid composite (Grandio Blocks, Voco), resin-based composite (Cerasmart, GC), lithium disilicate (E-Max, Ivoclar), and high-translucency zirconia (Katana STML, Kuraray Noritake). After storage in distilled water at 37◦ C for two days, the specimens were tested using a chewing machine with a stainless-steel ball as an antagonist (49N loads, 250,000 cycles). Testing was performed using distilled water, Coca-Cola, and Red Bull as abrasive media. Wear and surface roughness analyses of the CAD/CAM materials were performed using a 3D profilometer and analyzed with two-way analysis of variance and post hoc pairwise comparison procedures. Worn surfaces were examined using scanning electron microscopy. Resin-based materials suffered higher volumetric wear than ceramics (p = 0.00001). Water induced significantly less volumetric wear than the other tested solutions (p = 0.0014), independent of the material tested. High-translucency zirconia showed less surface roughness than all the other materials tested. The selection of monolithic CAD/CAM materials to restore worn dentition due to erosive processes could impact restorative therapy stability over time. Resin-based materials seem to be more influenced by the acidic environment when subjected to a two-body wear test.
2021
13
17
1
9
Acidic pH; CAD/CAM materials; Roughness; Two-body wear
Scotti N.; Ionescu A.; Comba A.; Baldi A.; Brambilla E.; Vichi A.; Goracci C.; Ciardiello R.; Tridello A.; Paolino D.; Botto D.
File in questo prodotto:
File Dimensione Formato  
polymers-13-02915.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 696.64 kB
Formato Adobe PDF
696.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1849923
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact