Current recommender systems employ item-centric properties to estimate ratings and present the results to the user. However, recent studies highlight the fact that the stages of item fruition also involve extrinsic factors, such as the interaction with the service provider before, during and after item selection. In other words, a holistic view of consumer experience, including local properties of items, as well as consumers’ perceptions of item fruition, should be adopted to enhance user awareness and decision-making. In this work, we integrate recommender systems with service models to reason about the different stages of item fruition. By exploiting the Service Journey Maps to define service-based item and user profiles, we develop a novel family of recommender systems that evaluate items by taking preference management and overall consumer experience into account. Moreover, we introduce a two-level visual model to provide users with different information about recommendation results: (i) the higher level summarizes consumer experience about items and supports the identification of promising suggestions within a possibly long list of results; (ii) the lower level enables the exploration of detailed data about the local properties of items. In a user test instantiated in the home-booking domain, we compared our models to standard recommender systems. We found that the service-based algorithms that only use item fruition experience excel in ranking and minimize the error in rating estimation. Moreover, the combination of data about item fruition experience and item properties achieves slightly lower recommendation performance; however, it enhances users’ perceptions of the awareness and the decision-making support provided by the system. These results encourage the adoption of service-based models to summarize user preferences and experience in recommender systems.

Service-Aware Personalized Item Recommendation

Noemi Mauro;Zhongli Filippo Hu;Liliana Ardissono
2022-01-01

Abstract

Current recommender systems employ item-centric properties to estimate ratings and present the results to the user. However, recent studies highlight the fact that the stages of item fruition also involve extrinsic factors, such as the interaction with the service provider before, during and after item selection. In other words, a holistic view of consumer experience, including local properties of items, as well as consumers’ perceptions of item fruition, should be adopted to enhance user awareness and decision-making. In this work, we integrate recommender systems with service models to reason about the different stages of item fruition. By exploiting the Service Journey Maps to define service-based item and user profiles, we develop a novel family of recommender systems that evaluate items by taking preference management and overall consumer experience into account. Moreover, we introduce a two-level visual model to provide users with different information about recommendation results: (i) the higher level summarizes consumer experience about items and supports the identification of promising suggestions within a possibly long list of results; (ii) the lower level enables the exploration of detailed data about the local properties of items. In a user test instantiated in the home-booking domain, we compared our models to standard recommender systems. We found that the service-based algorithms that only use item fruition experience excel in ranking and minimize the error in rating estimation. Moreover, the combination of data about item fruition experience and item properties achieves slightly lower recommendation performance; however, it enhances users’ perceptions of the awareness and the decision-making support provided by the system. These results encourage the adoption of service-based models to summarize user preferences and experience in recommender systems.
2022
Inglese
Esperti anonimi
10
26715
26729
15
https://ieeexplore.ieee.org/document/9729739?source=authoralert
Information filtering Recommender systems Data visualization Service modeling
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
3
Noemi Mauro, Zhongli Filippo Hu, Liliana Ardissono
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Service-Aware_Personalized_Item_Recommendation_editorial.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1850059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact