Under climate change, modifications on plants’ growth are expected to be the strongest at species margins. Therein, tree acclimation could play a key role as migration is predicted to be too slow to track shifts of bioclimatic envelops. A requirement is, however, that intra-population genetic diversity be high enough for allowing such adaptation of tree populations to climate change. In this study, we tested for the existence of relationships between genetic diversity, site environmental conditions, and the response of annual tree growth to climate of Pinus cembra at its southern limit in the Alps. Site-specific climatic and environmental factors predominantly determined the response of trees along the precipitation gradient. The growth-climate interactions were chiefly linked to mean annual precipitation and temperature, slope and tree-size, and less to genetic diversity. We show that genetic background of Pinus cembra has exclusively indirect modulating power with limited effects on tree-ring formation, and within the southern limit in the Alps, genetic variability is not necessarily well expressed in the patterns of annual tree growth. Our results may imply little adaptive capacity of these populations to future changes in the water balance.

Tree-rings, genetics and the environment: Complex interactions at the rear edge of species distribution range

Motta R.;
2021-01-01

Abstract

Under climate change, modifications on plants’ growth are expected to be the strongest at species margins. Therein, tree acclimation could play a key role as migration is predicted to be too slow to track shifts of bioclimatic envelops. A requirement is, however, that intra-population genetic diversity be high enough for allowing such adaptation of tree populations to climate change. In this study, we tested for the existence of relationships between genetic diversity, site environmental conditions, and the response of annual tree growth to climate of Pinus cembra at its southern limit in the Alps. Site-specific climatic and environmental factors predominantly determined the response of trees along the precipitation gradient. The growth-climate interactions were chiefly linked to mean annual precipitation and temperature, slope and tree-size, and less to genetic diversity. We show that genetic background of Pinus cembra has exclusively indirect modulating power with limited effects on tree-ring formation, and within the southern limit in the Alps, genetic variability is not necessarily well expressed in the patterns of annual tree growth. Our results may imply little adaptive capacity of these populations to future changes in the water balance.
2021
69
125863
125863
Dendrochronology; Functional trait; Genetic diversity; Grow-climate relationship; Subalpine forest
Housset J.M.; Toth E.G.; Girardin M.P.; Tremblay F.; Motta R.; Bergeron Y.; Carcaillet C.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S112578652100059X-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1851144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact