Globally, excessive fine sediment (particles <2 mm) deposition is acknowledged to have deleterious effects on aquatic biodiversity. However, the impacts are often equivocal possibly reflecting landscape context, although this is rarely considered. To address this, we examined the temporal response of macroinvertebrate taxonomic and functional diversity to experimental fine sediment clogging in a prealpine (Italy) and lowland setting (UK). Colonisation devices were installed insitu with either clean or clogged substrates and examined for short (7–14 days), medium (21–28 days) and long (56–63 days) timescales. Clogging resulted in altered taxonomic community composition in both the lowland and prealpine rivers and modified functional community composition in the prealpine river. Nestedness was consistently found to be the dominant process driving differences in taxonomic composition between the clean and clogged substrates in the prealpine environment, with clogged substrates forming a nested community. No dominant component structured lowland taxonomic communities. Functional community composition was driven by nestedness in both environments but was heavily dominant in the case of the prealpine river, possibly reflecting low functional redundancy. Widely employed community richness metrics (EPT, taxa and functional richness) only displayed a response to fine sediment loading in the prealpine environment but taxa characterized as sensitive to fine sediment as well as some functional feeding groups did exhibit differences in both settings. In the prealpine environment, the effects of fine sediment intensified over time for several community metrics. Although further research is required to corroborate our findings and extend our observations across more rivers and typologies, excessive fine sediment is a pervasive stressor affecting macroinvertebrate communities in prealpine and lowland environments. However, the biodiversity facets that responded to clogging differed between the two landscape settings probably reflecting wider environmental filtering. Monitoring and managing fine sediment loading likely requires context specific approaches to maximise ecological benefits.

Temporal effects of fine sediment deposition on benthic macroinvertebrate community structure, function and biodiversity likely reflects landscape setting

Fenoglio S.;
2022-01-01

Abstract

Globally, excessive fine sediment (particles <2 mm) deposition is acknowledged to have deleterious effects on aquatic biodiversity. However, the impacts are often equivocal possibly reflecting landscape context, although this is rarely considered. To address this, we examined the temporal response of macroinvertebrate taxonomic and functional diversity to experimental fine sediment clogging in a prealpine (Italy) and lowland setting (UK). Colonisation devices were installed insitu with either clean or clogged substrates and examined for short (7–14 days), medium (21–28 days) and long (56–63 days) timescales. Clogging resulted in altered taxonomic community composition in both the lowland and prealpine rivers and modified functional community composition in the prealpine river. Nestedness was consistently found to be the dominant process driving differences in taxonomic composition between the clean and clogged substrates in the prealpine environment, with clogged substrates forming a nested community. No dominant component structured lowland taxonomic communities. Functional community composition was driven by nestedness in both environments but was heavily dominant in the case of the prealpine river, possibly reflecting low functional redundancy. Widely employed community richness metrics (EPT, taxa and functional richness) only displayed a response to fine sediment loading in the prealpine environment but taxa characterized as sensitive to fine sediment as well as some functional feeding groups did exhibit differences in both settings. In the prealpine environment, the effects of fine sediment intensified over time for several community metrics. Although further research is required to corroborate our findings and extend our observations across more rivers and typologies, excessive fine sediment is a pervasive stressor affecting macroinvertebrate communities in prealpine and lowland environments. However, the biodiversity facets that responded to clogging differed between the two landscape settings probably reflecting wider environmental filtering. Monitoring and managing fine sediment loading likely requires context specific approaches to maximise ecological benefits.
2022
Inglese
Esperti anonimi
829
154612
154628
17
beta diversity partitioning; Biological traits; Environmental filtering; Functional redundancy; Richness; Taxonomic
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
5
Mathers K.L.; Doretto A.; Fenoglio S.; Hill M.J.; Wood P.J.
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
2022_Mathers_et_al_STOTEN.pdf

Accesso aperto

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1853540
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact