We prove how the universal enveloping algebra constructions for Lie–Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a supplement, the categorical approach offers new insights into the definitions of Lie–Rinehart algebra morphisms, of modules over Lie–Rinehart algebras and of the infinitesimal gauge algebra of a module.
Universal Enveloping Algebras of Lie–Rinehart Algebras as a Left Adjoint Functor
Saracco P.
First
2022-01-01
Abstract
We prove how the universal enveloping algebra constructions for Lie–Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a supplement, the categorical approach offers new insights into the definitions of Lie–Rinehart algebra morphisms, of modules over Lie–Rinehart algebras and of the infinitesimal gauge algebra of a module.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2022-03-20_UEA-ring_functor_AcceptedManuscript.pdf
Open Access dal 19/03/2023
Descrizione: Articolo principale, Accepted Manuscript
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
520.63 kB
Formato
Adobe PDF
|
520.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.