α-Mangostin (aMan) and Paeonol (Pae) have shown anticancer and anti-inflammatory properties. However, these two natural compounds have no clinical value because of their low solubility and low membrane permeability. In this study, we screened chemically synthesized derivatives from these two natural compounds as potential novel chemicals that increase cancer cell cytotoxicity over nontransformed human cells. We found that two derivative compounds, named α-Mangostin-1 (aMan1) and Paeonol-1 (Pae1) more efficiently and more specifically induced cytotoxicity in HCT116, HT29, and SW48 colorectal cancer cell lines than the parental compounds. Both aMan1 and Pae1 arrested HCT116 cells in the G1 phase and HT29 and SW48 cells in the G2–M phase of the cell cycle. Both aMan1 and Pae1 induced apoptosis in human colorectal cancer cells, through a caspase-dependent mechanism. aMan1 and Pae1 induced selective transcriptional responses in colorectal cancer cells involving genes related to metabolic stress and DNA damage response signaling pathways. Finally, experiments on primary colon organoids showed that both derivatives were able to kill cancer-derived organoids without affecting the viability of organoids derived from healthy tissue, where the parental compounds and the currently used chemotherapeutic drug irinotecan failed. In conclusion, our findings expand the knowledge of natural compound derivatives as anticancer agents and open new avenues of research in the derivation of lead compounds aimed at developing novel chemotherapeutic drugs for colorectal cancer treatment that selectively target cancer, but not healthy cells.

Characterization of Novel α-Mangostin and Paeonol Derivatives With Cancer-Selective Cytotoxicity

Krepelova Anna;Francesco Neri
Last
2022-01-01

Abstract

α-Mangostin (aMan) and Paeonol (Pae) have shown anticancer and anti-inflammatory properties. However, these two natural compounds have no clinical value because of their low solubility and low membrane permeability. In this study, we screened chemically synthesized derivatives from these two natural compounds as potential novel chemicals that increase cancer cell cytotoxicity over nontransformed human cells. We found that two derivative compounds, named α-Mangostin-1 (aMan1) and Paeonol-1 (Pae1) more efficiently and more specifically induced cytotoxicity in HCT116, HT29, and SW48 colorectal cancer cell lines than the parental compounds. Both aMan1 and Pae1 arrested HCT116 cells in the G1 phase and HT29 and SW48 cells in the G2–M phase of the cell cycle. Both aMan1 and Pae1 induced apoptosis in human colorectal cancer cells, through a caspase-dependent mechanism. aMan1 and Pae1 induced selective transcriptional responses in colorectal cancer cells involving genes related to metabolic stress and DNA damage response signaling pathways. Finally, experiments on primary colon organoids showed that both derivatives were able to kill cancer-derived organoids without affecting the viability of organoids derived from healthy tissue, where the parental compounds and the currently used chemotherapeutic drug irinotecan failed. In conclusion, our findings expand the knowledge of natural compound derivatives as anticancer agents and open new avenues of research in the derivation of lead compounds aimed at developing novel chemotherapeutic drugs for colorectal cancer treatment that selectively target cancer, but not healthy cells.
2022
21
2
257
270
Acetophenones; Anti-Inflammatory Agents; Antineoplastic Agents; Cell Proliferation; Colorectal Neoplasms; Humans; Protein Kinase Inhibitors; Xanthones
Suneetha Nunna; Ying-Pei Huang; Mahdi Rasa; Krepelova Anna; Francesco Annunziata; Lisa Adam; Sandra Kaeppel; Ming-Hua Hsu; Francesco Neri
File in questo prodotto:
File Dimensione Formato  
Nunna-Characterization of novel alpha-Mangostin and Paeonol derivatives with cancer-selective cytotoxicity-2021-Molecular Cancer Therapeutics.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1858348
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact