We derive the partition function of an N=2 chiral multiplet on topologically twisted H2×S1. The chiral multiplet is coupled to a background vector multiplet encoding a real mass deformation. We consider an H2×S1 metric containing two parameters: one is the S1 radius, while the other gives a fugacity q for the angular momentum on H2. The computation is carried out by means of supersymmetric localization, which provides a finite answer written in terms of q-Pochammer symbols and multiple Zeta functions. Especially, the partition function of normalizable fields reproduces three-dimensional holomorphic blocks.

Supersymmetric localization of refined chiral multiplets on topologically twisted H2 × S1

Pittelli A.
2020-01-01

Abstract

We derive the partition function of an N=2 chiral multiplet on topologically twisted H2×S1. The chiral multiplet is coupled to a background vector multiplet encoding a real mass deformation. We consider an H2×S1 metric containing two parameters: one is the S1 radius, while the other gives a fugacity q for the angular momentum on H2. The computation is carried out by means of supersymmetric localization, which provides a finite answer written in terms of q-Pochammer symbols and multiple Zeta functions. Especially, the partition function of normalizable fields reproduces three-dimensional holomorphic blocks.
2020
801
1
5
Pittelli A.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0370269319308767-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 293.09 kB
Formato Adobe PDF
293.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1866867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact