We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are related, and we discuss the consequences of this relation for the Weyl anomaly coefficients as well as in a few examples, including the supersymmetric Rényi entropy. Imposing consistency with existing results, we propose a general relation that could hold for sufficiently supersymmetric defects of arbitrary dimension and codimension. Turning to N = (2, 2) surface defects in N≥ 2 superconformal field theories, we study the associated chiral algebra. We work out various properties of the modules introduced by the defect in the original chiral algebra. In particular, we find that the one-point function of the stress tensor controls the dimension of the defect identity in chiral algebra, providing a novel way to compute it, once the defect identity is identified. Studying a few examples, we show explicitly how these properties are realized.

Superconformal surfaces in four dimensions

Bianchi L.;
2020-01-01

Abstract

We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are related, and we discuss the consequences of this relation for the Weyl anomaly coefficients as well as in a few examples, including the supersymmetric Rényi entropy. Imposing consistency with existing results, we propose a general relation that could hold for sufficiently supersymmetric defects of arbitrary dimension and codimension. Turning to N = (2, 2) surface defects in N≥ 2 superconformal field theories, we study the associated chiral algebra. We work out various properties of the modules introduced by the defect in the original chiral algebra. In particular, we find that the one-point function of the stress tensor controls the dimension of the defect identity in chiral algebra, providing a novel way to compute it, once the defect identity is identified. Studying a few examples, we show explicitly how these properties are realized.
2020
2020
6
1
56
Conformal and W Symmetry; Conformal Field Theory; Extended Supersymmetry; Supersymmetric Gauge Theory
Bianchi L.; Lemos M.
File in questo prodotto:
File Dimensione Formato  
scoap3-fulltext.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 866.8 kB
Formato Adobe PDF
866.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1866925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact