We consider a Lagrange-Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r-1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted Lp-spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.

On an interpolation process of Lagrange-Hermite type

Notarangelo I.
2012-01-01

Abstract

We consider a Lagrange-Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r-1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted Lp-spaces, 1 < p < 1, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ±1. Moreover, we give optimal estimates for the error of this process also in the weighted uniform metric.
2012
91
1
163
175
http://www.doiserbia.nb.rs/Article.aspx?ID=0350-13021205163M#.Ytavp71By1s
Approximation by polynomials; Hermite-Lagrange interpolation; Jacobi weights; Orthogonal polynomials
Mastroianni G.; Milovanovic G.V.; Notarangelo I.
File in questo prodotto:
File Dimensione Formato  
MastroianniMilovanovicNotarangeloPIM2012.pdf

Accesso aperto

Dimensione 181.38 kB
Formato Adobe PDF
181.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1870047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact