We discuss what is light-cone quantization on a curved spacetime also without a null Killing vector. Then we consider as an example the light-cone quantization of a scalar field on a background with a Killing vector and the connection with the second quantization of the particle in the same background. It turns out that the proper way to define the light-cone quantization is to require that the constant light-cone time hypersurface is null or, equivalently, that the particle Hamiltonian is free of square roots. Moreover, in order to quantize the scalar theory it is necessary to use not the original scalar rather a scalar field density, i.e. the Schrodinger wave functional depends on a scalar density and not on the original field. Finally we recover this result as the second quantization of a particle on the same background, where it is necessary to add as input the fact that we are dealing with a scalar density.
Light-cone quantization of scalar field on time-dependent backgrounds
Arduino, A;Pesando, I
2022-01-01
Abstract
We discuss what is light-cone quantization on a curved spacetime also without a null Killing vector. Then we consider as an example the light-cone quantization of a scalar field on a background with a Killing vector and the connection with the second quantization of the particle in the same background. It turns out that the proper way to define the light-cone quantization is to require that the constant light-cone time hypersurface is null or, equivalently, that the particle Hamiltonian is free of square roots. Moreover, in order to quantize the scalar theory it is necessary to use not the original scalar rather a scalar field density, i.e. the Schrodinger wave functional depends on a scalar density and not on the original field. Finally we recover this result as the second quantization of a particle on the same background, where it is necessary to add as input the fact that we are dealing with a scalar density.File | Dimensione | Formato | |
---|---|---|---|
s10052-022-10575-8.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
336.54 kB
Formato
Adobe PDF
|
336.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.