Manipulating electronic interlayer coupling in layered van der Waals (vdW) materials is essential for designing optoelectronic devices. Here, we control vibrational and electronic interlayer coupling in bi- and trilayer 2 H − MoS 2 using large external electric fields in a microcapacitor device. The electric field lifts Raman selection rules and activates phonon modes in excellent agreement with ab initio calculations. Through polarization-resolved photoluminescence spectroscopy in the same device, we observe a strongly tunable valley dichroism with maximum circular polarization degree of ∼ 60 % in bilayer and ∼ 35% in trilayer MoS 2 that is fully consistent with a rate equation model which includes input from electronic band structure calculations. We identify the highly delocalized electron wave function between the layers close to the high-symmetry Q points as the origin of the tunable circular dichroism. Our results demonstrate the possibility of electric-field-tunable interlayer coupling for controlling emergent spin-valley physics and hybridization-driven effects in vdW materials and their heterostructures.

Electrical control of orbital and vibrational interlayer coupling in bi- and trilayer 2H−MoS2

Maschio, L.;
2022-01-01

Abstract

Manipulating electronic interlayer coupling in layered van der Waals (vdW) materials is essential for designing optoelectronic devices. Here, we control vibrational and electronic interlayer coupling in bi- and trilayer 2 H − MoS 2 using large external electric fields in a microcapacitor device. The electric field lifts Raman selection rules and activates phonon modes in excellent agreement with ab initio calculations. Through polarization-resolved photoluminescence spectroscopy in the same device, we observe a strongly tunable valley dichroism with maximum circular polarization degree of ∼ 60 % in bilayer and ∼ 35% in trilayer MoS 2 that is fully consistent with a rate equation model which includes input from electronic band structure calculations. We identify the highly delocalized electron wave function between the layers close to the high-symmetry Q points as the origin of the tunable circular dichroism. Our results demonstrate the possibility of electric-field-tunable interlayer coupling for controlling emergent spin-valley physics and hybridization-driven effects in vdW materials and their heterostructures.
2022
6
2
024002
024013
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.6.024002
Klein, J.; Wierzbowski, J.; Soubelet, P.; Brumme, T.; Maschio, L.; Kuc, A.; Müller, K.; Stier, A. V.; Finley, J. J.
File in questo prodotto:
File Dimensione Formato  
Klein_PRM_2022.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1873041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact