Manipulating electronic interlayer coupling in layered van der Waals (vdW) materials is essential for designing optoelectronic devices. Here, we control vibrational and electronic interlayer coupling in bi- and trilayer 2 H − MoS 2 using large external electric fields in a microcapacitor device. The electric field lifts Raman selection rules and activates phonon modes in excellent agreement with ab initio calculations. Through polarization-resolved photoluminescence spectroscopy in the same device, we observe a strongly tunable valley dichroism with maximum circular polarization degree of ∼ 60 % in bilayer and ∼ 35% in trilayer MoS 2 that is fully consistent with a rate equation model which includes input from electronic band structure calculations. We identify the highly delocalized electron wave function between the layers close to the high-symmetry Q points as the origin of the tunable circular dichroism. Our results demonstrate the possibility of electric-field-tunable interlayer coupling for controlling emergent spin-valley physics and hybridization-driven effects in vdW materials and their heterostructures.
Electrical control of orbital and vibrational interlayer coupling in bi- and trilayer 2H−MoS2
Maschio, L.;
2022-01-01
Abstract
Manipulating electronic interlayer coupling in layered van der Waals (vdW) materials is essential for designing optoelectronic devices. Here, we control vibrational and electronic interlayer coupling in bi- and trilayer 2 H − MoS 2 using large external electric fields in a microcapacitor device. The electric field lifts Raman selection rules and activates phonon modes in excellent agreement with ab initio calculations. Through polarization-resolved photoluminescence spectroscopy in the same device, we observe a strongly tunable valley dichroism with maximum circular polarization degree of ∼ 60 % in bilayer and ∼ 35% in trilayer MoS 2 that is fully consistent with a rate equation model which includes input from electronic band structure calculations. We identify the highly delocalized electron wave function between the layers close to the high-symmetry Q points as the origin of the tunable circular dichroism. Our results demonstrate the possibility of electric-field-tunable interlayer coupling for controlling emergent spin-valley physics and hybridization-driven effects in vdW materials and their heterostructures.File | Dimensione | Formato | |
---|---|---|---|
Klein_PRM_2022.pdf
Accesso aperto
Descrizione: Articolo
Tipo di file:
PDF EDITORIALE
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.