The wild boar is one of the most invasive species among large mammals in both its native and introduced ranges. This species represents a main threat for crops and biodiversity and a pest for the pig industry due to the rapid expansion of the African swine fever. Because of its peculiar life history traits, population control programmes and recreational hunting are usually unable to effectively reduce the number of wild boars. Therefore, a reliable approach based on appropriate, cost-effective, monitoring methodologies is urgently required. Effective monitoring should adopt effective sampling strategies, otherwise the detection of population trends can be erroneous and resulting in a mismatch of appropriate management actions. First, we review the status-of-the-art of wildlife monitoring with a special focus on wild boar and feral pigs. Then, we show that nocturnal distance sampling, carried out using thermal cameras, can be an effective monitoring technique for wild boar population assessment regardless of the characteristics of the sampled area. Using data from multiple surveys performed in four study areas in Italy, characterised by contrasting topography, habitats and level of environmental visibility, we found that the estimate of precision is generally good and almost independent of landscape conditions. A simple method to estimate visibility, which may empirically help wildlife managers to design effective nocturnal distance sampling surveys, is proposed. The bias of our population estimates is evaluated using simulations showing that in some areas the estimate is unbiased, while in others there is the tendency towards a negative bias. Based on reported results, we provide guidelines to perform nocturnal distance sampling of wild boar populations.

Reliable estimates of wild boar populations by nocturnal distance sampling

Valentina La Morgia;
2020-01-01

Abstract

The wild boar is one of the most invasive species among large mammals in both its native and introduced ranges. This species represents a main threat for crops and biodiversity and a pest for the pig industry due to the rapid expansion of the African swine fever. Because of its peculiar life history traits, population control programmes and recreational hunting are usually unable to effectively reduce the number of wild boars. Therefore, a reliable approach based on appropriate, cost-effective, monitoring methodologies is urgently required. Effective monitoring should adopt effective sampling strategies, otherwise the detection of population trends can be erroneous and resulting in a mismatch of appropriate management actions. First, we review the status-of-the-art of wildlife monitoring with a special focus on wild boar and feral pigs. Then, we show that nocturnal distance sampling, carried out using thermal cameras, can be an effective monitoring technique for wild boar population assessment regardless of the characteristics of the sampled area. Using data from multiple surveys performed in four study areas in Italy, characterised by contrasting topography, habitats and level of environmental visibility, we found that the estimate of precision is generally good and almost independent of landscape conditions. A simple method to estimate visibility, which may empirically help wildlife managers to design effective nocturnal distance sampling surveys, is proposed. The bias of our population estimates is evaluated using simulations showing that in some areas the estimate is unbiased, while in others there is the tendency towards a negative bias. Based on reported results, we provide guidelines to perform nocturnal distance sampling of wild boar populations.
2020
2020
4
1
15
distance sampling; FLIR; population density; population index; Sus scrofa; thermal imagery; wild boar
Stefano Focardi; Valentina La Morgia; Paolo Montanaro; Francesco Riga; Alessandro Calabrese; Francesca Ronchi; Paola Aragno; Marianne Scacco; Roberta Calmanti; Barbara Franzetti
File in questo prodotto:
File Dimensione Formato  
wlb.00694.pdf

Accesso aperto

Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1875402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 0
social impact