Reconciling the constraint of guaranteeing to always meet deadlines with the optimization objective of reducing waste of computing capacity lies at the heart of a large body of research on real-time systems. Most approaches to doing so require the application designer to specify a deeper characterization of the workload (and perhaps extensive profiling of its run-time behavior), which then enables shaping the resource assignment to the application. In practice, such approaches are weak as they load the designer with the heavy duty of a detailed workload characterization. We seek approaches for reducing the waste of computing resources for recurrent real-time workloads in the absence of such additional characterization, by monitoring the minimal information that needs to be observable about the run-time behavior of a real-time system: its response time. We propose two resource control strategies to assign resources: one based on binary-exponential search and the other, on principles of control. Both approaches are compared against the clairvoyant scenario in which the average/typical behavior is known. Via an extensive simulation, we show that both techniques are useful approaches to reducing resource computation while meeting hard deadlines.

Feedback-based resource management for multi-threaded applications

Bini, E;
2022-01-01

Abstract

Reconciling the constraint of guaranteeing to always meet deadlines with the optimization objective of reducing waste of computing capacity lies at the heart of a large body of research on real-time systems. Most approaches to doing so require the application designer to specify a deeper characterization of the workload (and perhaps extensive profiling of its run-time behavior), which then enables shaping the resource assignment to the application. In practice, such approaches are weak as they load the designer with the heavy duty of a detailed workload characterization. We seek approaches for reducing the waste of computing resources for recurrent real-time workloads in the absence of such additional characterization, by monitoring the minimal information that needs to be observable about the run-time behavior of a real-time system: its response time. We propose two resource control strategies to assign resources: one based on binary-exponential search and the other, on principles of control. Both approaches are compared against the clairvoyant scenario in which the average/typical behavior is known. Via an extensive simulation, we show that both techniques are useful approaches to reducing resource computation while meeting hard deadlines.
2022
1
32
Feedback-based resource management; Multi-core scheduling; Multi-threaded applications
Papadopoulos, AV; Agrawal, K; Bini, E; Baruah, S
File in questo prodotto:
File Dimensione Formato  
s11241-022-09386-7.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1876516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact