The cingulate cortex is known to be a complex structure, involved in several cognitive and emotional functions, as well as being altered by a variety of brain disorders. This heterogeneity is reflected in the multiple parceling models proposed in the literature. At the present, sub-regions of the cingulate cortex had been identified taking into account functional and structural connectivity, as well as cytological and electrochemical properties. In the present work, we propose an innovative node-wise parceling approach based on meta-analytic Bayesian co-alteration. To this aim, 193 case-control voxel-based morphometry experiments were analyzed, and the Patel's kappa index was used to assess probability of morphometric co-alteration between nodes placed in the cingulate cortex and in the rest of the brain. Hierarchical clustering was then applied to identify nodes in the cingulate cortex exhibiting a similar pattern of whole-brain co-alteration. The obtained dendrogram highlighted a robust fronto-parietal cluster compatible with the default mode network, and being supported by the interplay between the retrosplenial cortex and the anterior and posterior cingulate cortex, rarely described in the literature. This ensemble was further confirmed by the analysis of functional patterns. Leveraging on co-alteration to investigate cortical organization could, therefore, allow to combine multimodal information, resolving conflicting results sometimes coming from the separate use of singular modalities. Crucially, this provides a valuable way to understand the pathological brain using data driven, whole-brain informed and context-specific evidence in a way not yet explored in the field.

A co-alteration parceling of the cingulate cortex

Manuello, Jordi;Mancuso, Lorenzo;Liloia, Donato
;
Cauda, Franco;Duca, Sergio;Costa, Tommaso
2022-01-01

Abstract

The cingulate cortex is known to be a complex structure, involved in several cognitive and emotional functions, as well as being altered by a variety of brain disorders. This heterogeneity is reflected in the multiple parceling models proposed in the literature. At the present, sub-regions of the cingulate cortex had been identified taking into account functional and structural connectivity, as well as cytological and electrochemical properties. In the present work, we propose an innovative node-wise parceling approach based on meta-analytic Bayesian co-alteration. To this aim, 193 case-control voxel-based morphometry experiments were analyzed, and the Patel's kappa index was used to assess probability of morphometric co-alteration between nodes placed in the cingulate cortex and in the rest of the brain. Hierarchical clustering was then applied to identify nodes in the cingulate cortex exhibiting a similar pattern of whole-brain co-alteration. The obtained dendrogram highlighted a robust fronto-parietal cluster compatible with the default mode network, and being supported by the interplay between the retrosplenial cortex and the anterior and posterior cingulate cortex, rarely described in the literature. This ensemble was further confirmed by the analysis of functional patterns. Leveraging on co-alteration to investigate cortical organization could, therefore, allow to combine multimodal information, resolving conflicting results sometimes coming from the separate use of singular modalities. Crucially, this provides a valuable way to understand the pathological brain using data driven, whole-brain informed and context-specific evidence in a way not yet explored in the field.
2022
227
5
1803
1816
https://doi.org/10.1007/s00429-022-02473-2
Bayesian statistic; Cingulate cortex; Hierarchical clustering; Morphometric co-alteration network; Retrosplenial cortex; Bayes Theorem; Brain; Brain Mapping; Neural Pathways; Gyrus Cinguli; Magnetic Resonance Imaging
Manuello, Jordi; Mancuso, Lorenzo; Liloia, Donato; Cauda, Franco; Duca, Sergio; Costa, Tommaso
File in questo prodotto:
File Dimensione Formato  
A co‑alteration parceling of the cingulate cortex.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1877409
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact