Core-collapse supernovae are fascinating astrophysical objects for multimessenger studies. Gravitational waves are expected to play an important role in the supernova explosion mechanism. Unfortunately, their modeling is challenging, due to the stochastic nature of the dynamics and the vast range of possible progenitors. Therefore, the gravitational wave detection from these objects is still elusive with already advanced detectors. Low-energy neutrinos will be emitted copiously during the core-collapse explosion and can help the gravitational wave counterpart search. In this work, we develop a multimessenger strategy to look for such astrophysical objects. We exploit a global network of both low-energy neutrino and gravitational wave detectors. First, we discuss how to improve the detection potential of the neutrino sub-network by exploiting the time profile of a neutrino burst from a core-collapse supernova. We show that in the proposed approach, neutrino detectors can gain at least 10% of detection efficiency at the distance where their efficiency drops. Then, we combine the information provided by gravitational wave and neutrino signals in a multimessenger analysis. In particular, by using the clusters of low-energy neutrinos observed by LVD and KamLAND detectors in combination with the gravitational wave triggers from LIGO-Virgo detector network, we obtain an increase of the probability to detect the gravitational wave signal from a core-collapse supernova at 60 kpc, from zero to similar to 33% for some specific gravitational wave emission model.

Multimessenger analysis strategy for core-collapse supernova search: gravitational waves and low-energy neutrinos

Carlo Francesco Vigorito;
2021-01-01

Abstract

Core-collapse supernovae are fascinating astrophysical objects for multimessenger studies. Gravitational waves are expected to play an important role in the supernova explosion mechanism. Unfortunately, their modeling is challenging, due to the stochastic nature of the dynamics and the vast range of possible progenitors. Therefore, the gravitational wave detection from these objects is still elusive with already advanced detectors. Low-energy neutrinos will be emitted copiously during the core-collapse explosion and can help the gravitational wave counterpart search. In this work, we develop a multimessenger strategy to look for such astrophysical objects. We exploit a global network of both low-energy neutrino and gravitational wave detectors. First, we discuss how to improve the detection potential of the neutrino sub-network by exploiting the time profile of a neutrino burst from a core-collapse supernova. We show that in the proposed approach, neutrino detectors can gain at least 10% of detection efficiency at the distance where their efficiency drops. Then, we combine the information provided by gravitational wave and neutrino signals in a multimessenger analysis. In particular, by using the clusters of low-energy neutrinos observed by LVD and KamLAND detectors in combination with the gravitational wave triggers from LIGO-Virgo detector network, we obtain an increase of the probability to detect the gravitational wave signal from a core-collapse supernova at 60 kpc, from zero to similar to 33% for some specific gravitational wave emission model.
2021
2021
11
021
046
core-collapse supernovae; gravitational waves / experiments; gravitational waves / sources; supernova neutrinos
Odysse Halim; Claudio Casentini; Marco Drago; Viviana Fafone; Kate Scholberg; Carlo Francesco Vigorito; Giulia Pagliaroli
File in questo prodotto:
File Dimensione Formato  
Halim_2021_J._Cosmol._Astropart._Phys._2021_021.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2107.02050.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1877422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact