The Schwarzschild-Couder Telescope (SCT) is a telescope concept proposed for the Cherenkov Telescope Array. It employs a dual-mirror optical design to remove comatic aberrations over an 8 degrees field of view, and a high-density silicon photomultiplier camera (with a pixel resolution of 4 arcmin) to record Cherenkov emission from cosmic ray and gamma-ray initiated particle cascades in the atmosphere. The prototype SCT (pSCT), comprising a 9.7 m diameter primary mirror and a partially instrumented camera with 1536 pixels, has been constructed at the Fred Lawrence Whipple Observatory. The telescope was inaugurated in January 2019, with commissioning continuing throughout 2019. We describe the first campaign of observations with the pSCT, conducted in January and February of 2020, and demonstrate the detection of gamma-ray emission from the Crab Nebula with a statistical significance of 8.6 sigma. (C) 2021 Elsevier B.V. All rights reserved.

Detection of the Crab Nebula with the 9.7 m prototype Schwarzschild-Couder telescope

Depaoli, D;
2021-01-01

Abstract

The Schwarzschild-Couder Telescope (SCT) is a telescope concept proposed for the Cherenkov Telescope Array. It employs a dual-mirror optical design to remove comatic aberrations over an 8 degrees field of view, and a high-density silicon photomultiplier camera (with a pixel resolution of 4 arcmin) to record Cherenkov emission from cosmic ray and gamma-ray initiated particle cascades in the atmosphere. The prototype SCT (pSCT), comprising a 9.7 m diameter primary mirror and a partially instrumented camera with 1536 pixels, has been constructed at the Fred Lawrence Whipple Observatory. The telescope was inaugurated in January 2019, with commissioning continuing throughout 2019. We describe the first campaign of observations with the pSCT, conducted in January and February of 2020, and demonstrate the detection of gamma-ray emission from the Crab Nebula with a statistical significance of 8.6 sigma. (C) 2021 Elsevier B.V. All rights reserved.
2021
128
102562
1
10
Adams, CB; Alfaro, R; Ambrosi, G; Ambrosio, M; Aramo, C; Arlen, T; Batista, PI; Benbow, W; Bertucci, B; Bissaldi, E; Biteau, J; Bitossi, M; Boiano, A; Bonavolonta, C; Bose, R; Bouvier, A; Brill, A; Brown, AM; Buckley, JH; Byrum, K; Cameron, RA; Canestrari, R; Capasso, M; Caprai, M; Covault, CE; Depaoli, D; Errando, M; Fegan, S; Feng, Q; Fiandrini, E; Foote, G; Fortin, P; Funk, S; Furniss, A; Garfias, F; Gent, A; Giglietto, N; Giordano, F; Giro, E; Gonzalez, MM; Guarino, V; Halliday, R; Hervet, O; Holder, J; Hughes, G; Humensky, TB; Ionica, M; Iriarte, A; Jin, W; Johnson, CA; Kaaret, P; Kieda, D; Kim, B; Kuznetsov, A; Lapington, JS; Licciulli, F; Loporchio, S; Masone, V; Meagher, K; Meures, T; Mode, BAW; Mognet, SAI; Mukherjee, R; Nguyen, T; Nieto, D; Okumura, A; Otte, N; La Palombara, N; Pantaleo, FR; Paoletti, R; Pareschi, G; Petrashyk, A; Di Pierro, F; Pueschel, E; Reynolds, PT; Ribeiro, D; Richards, G; Roache, E; Ross, D; Rousselle, J; Rugliancich, A; Ruiz-Diaz-Soto, J; Santander, M; Schlenstedt, S; Schneider, M; Scuderi, S; Shang, R; Sironi, G; Stevenson, B; Stiaccini, L; Tajima, H; Taylor, LP; Thornhill, J; Tosti, L; Tovmassian, G; Vagelli, V; Valentinoa, M; Vandenbroucke, J; Vassiliev, VV; Di Venere, L; Wakely, SP; Watson, JJ; White, R; Wilcoxa, P; Williams, DA; Wood, M; Yu, P; Zink, A
File in questo prodotto:
File Dimensione Formato  
2012.08448.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1877441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact