Background The antiviral role of glycosaminoglycans in human milk (HM-GAGs) has been poorly investigated. They are highly sulfated polysaccharides, which were proposed to act as decoy receptors according to their structure. The aim of this study is to evaluate the antiviral potential and the mechanism of action of total and individual HM-GAGs against three pediatric clinically relevant viruses: respiratory syncytial virus (RSV), cytomegalovirus (HCMV), and rotavirus. Methods HM-GAGs were isolated from HM and a library of individual GAGs, structurally related to HM-GAGs, was prepared. The antiviral activity of HM-GAGs and the impact of thermal treatment were investigated in vitro by specific antiviral assays. Results We demonstrated that HM-GAGs are endowed with anti-HCMV and anti-RSV activity and that they act by altering virus attachment to cell. We clarified the contribution of individual HM-GAGs, showing a specific structure-related activity. We did not observe any alteration of HM-GAG antiviral activity after thermal treatment. Conclusions We showed that HM-GAGs contribute to the overall antiviral activity of HM, likely exerting a synergic action with other HM antiviral agents. HM-GAGs can now be added to the list of endogenous factors that may reduce breast-milk-acquired HCMV symptomatic infections and protecting infants from respiratory tract infections by RSV. Impact HM-GAGs have been poorly investigated for their antiviral action so far. We demonstrated that HM-GAGs are endowed with significant anti-HCMV and anti-RSV activity and that they are able to alter virus binding to the cell. The contribution of individual HM-GAGs is mainly exerted by the FMHep and is not based on a simple charge interaction between the virus and sulfate groups but involves a specific GAG structural configuration. Our results contribute to identifying the multiple factors synergically acting in mediating HM antiviral properties and to clarifying their specific mechanism of action.

Human milk glycosaminoglycans inhibit cytomegalovirus and respiratory syncytial virus infectivity by impairing cell binding

Francese, Rachele
Co-first
;
Donalisio, Manuela
Co-first
;
Bertino, Enrico;Lembo, David
Co-last
2022-01-01

Abstract

Background The antiviral role of glycosaminoglycans in human milk (HM-GAGs) has been poorly investigated. They are highly sulfated polysaccharides, which were proposed to act as decoy receptors according to their structure. The aim of this study is to evaluate the antiviral potential and the mechanism of action of total and individual HM-GAGs against three pediatric clinically relevant viruses: respiratory syncytial virus (RSV), cytomegalovirus (HCMV), and rotavirus. Methods HM-GAGs were isolated from HM and a library of individual GAGs, structurally related to HM-GAGs, was prepared. The antiviral activity of HM-GAGs and the impact of thermal treatment were investigated in vitro by specific antiviral assays. Results We demonstrated that HM-GAGs are endowed with anti-HCMV and anti-RSV activity and that they act by altering virus attachment to cell. We clarified the contribution of individual HM-GAGs, showing a specific structure-related activity. We did not observe any alteration of HM-GAG antiviral activity after thermal treatment. Conclusions We showed that HM-GAGs contribute to the overall antiviral activity of HM, likely exerting a synergic action with other HM antiviral agents. HM-GAGs can now be added to the list of endogenous factors that may reduce breast-milk-acquired HCMV symptomatic infections and protecting infants from respiratory tract infections by RSV. Impact HM-GAGs have been poorly investigated for their antiviral action so far. We demonstrated that HM-GAGs are endowed with significant anti-HCMV and anti-RSV activity and that they are able to alter virus binding to the cell. The contribution of individual HM-GAGs is mainly exerted by the FMHep and is not based on a simple charge interaction between the virus and sulfate groups but involves a specific GAG structural configuration. Our results contribute to identifying the multiple factors synergically acting in mediating HM antiviral properties and to clarifying their specific mechanism of action.
2022
1038
1045
Francese, Rachele; Donalisio, Manuela; Rittà, Massimo; Capitani, Federica; Mantovani, Veronica; Maccari, Francesca; Tonetto, Paola; Moro, Guido E; Ber...espandi
File in questo prodotto:
File Dimensione Formato  
Manuscript_clean version.pdf

Open Access dal 07/11/2022

Descrizione: Pre-print
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 236.94 kB
Formato Adobe PDF
236.94 kB Adobe PDF Visualizza/Apri
HM-GAGs - HCMV - RSV.pdf

Accesso riservato

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1878604
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact