Glioblastoma (GBM) recurrences are inevitable, and mainly originate from residual tumor cells and the presence of glioma stem cells (GSC) around the resection cavity borders. We previously showed that the local treatment of GBM with nanomedicine-based Lauroyl-gemcitabine lipid nanocapsules (GemC12-LNC) hydrogel delayed tumor onset in various preclinical models and can be used as a scaffold to deliver multiple drugs. However, it does not inhibit tumor relapse in the long-term. In this work, we aim at encapsulating an anti-GSC molecule in the GemC12-LNC hydrogel to eliminate both GBM cells and GSC. We performed a screening on GBM cell lines (GL261 and U-87 MG) and patient-derived GSC (GBM9) to select the anti-GSC molecule that could act synergically with GemC12. Based on our results, salinomycin (Sal) and curcumin (Cur) were selected for further development. Both GemC12-Sal-LNC and GemC12-Cur LNC showed similar size (55 nm), zeta potential (- 2 mV) and viscoelastic properties compared to the GemC12-LNC hydrogel. Encapsulation efficiency was above 95 %. Moreover, the GemC12-Sal-LNC hydrogel was stable for at least 6 months and released both drugs over 30 days in vitro. Both hydrogels inhibited the growth of GL261 and U-87 MG spheroids. Flow cytometry analysis showed that Sal reduced the GSC population in GL261 and U-87 MG cells. Our results show that the co-encapsulation of Sal in the GemC12-LNC hydrogel can reduce both GBM cells and GSC, and therefore might be promising to avoid the onset of GBM recurrences.

Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells

Chiara Bastiancich
Co-last
;
2022-01-01

Abstract

Glioblastoma (GBM) recurrences are inevitable, and mainly originate from residual tumor cells and the presence of glioma stem cells (GSC) around the resection cavity borders. We previously showed that the local treatment of GBM with nanomedicine-based Lauroyl-gemcitabine lipid nanocapsules (GemC12-LNC) hydrogel delayed tumor onset in various preclinical models and can be used as a scaffold to deliver multiple drugs. However, it does not inhibit tumor relapse in the long-term. In this work, we aim at encapsulating an anti-GSC molecule in the GemC12-LNC hydrogel to eliminate both GBM cells and GSC. We performed a screening on GBM cell lines (GL261 and U-87 MG) and patient-derived GSC (GBM9) to select the anti-GSC molecule that could act synergically with GemC12. Based on our results, salinomycin (Sal) and curcumin (Cur) were selected for further development. Both GemC12-Sal-LNC and GemC12-Cur LNC showed similar size (55 nm), zeta potential (- 2 mV) and viscoelastic properties compared to the GemC12-LNC hydrogel. Encapsulation efficiency was above 95 %. Moreover, the GemC12-Sal-LNC hydrogel was stable for at least 6 months and released both drugs over 30 days in vitro. Both hydrogels inhibited the growth of GL261 and U-87 MG spheroids. Flow cytometry analysis showed that Sal reduced the GSC population in GL261 and U-87 MG cells. Our results show that the co-encapsulation of Sal in the GemC12-LNC hydrogel can reduce both GBM cells and GSC, and therefore might be promising to avoid the onset of GBM recurrences.
2022
628
122341
1
12
Gemcitabine; Glioblastoma; Glioma stem cells; Hydrogel; Local delivery; Salinomycin; Humans; Nanomedicine; Hydrogels; Cell Line, Tumor; Lipids; Neoplastic Stem Cells; Glioblastoma; Brain Neoplasms; Glioma; Curcumin
Elia Bozzato; Nikolaos Tsakiris; Adrien Paquot; Giulio G. Muccioli; Chiara Bastiancich; Véronique Préat
File in questo prodotto:
File Dimensione Formato  
Bozzato 2022.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1879766
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact